diff options
Diffstat (limited to 'services/std_svc/psci/psci_afflvl_on.c')
-rw-r--r-- | services/std_svc/psci/psci_afflvl_on.c | 486 |
1 files changed, 486 insertions, 0 deletions
diff --git a/services/std_svc/psci/psci_afflvl_on.c b/services/std_svc/psci/psci_afflvl_on.c new file mode 100644 index 0000000..e3a1831 --- /dev/null +++ b/services/std_svc/psci/psci_afflvl_on.c @@ -0,0 +1,486 @@ +/* + * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * Redistributions of source code must retain the above copyright notice, this + * list of conditions and the following disclaimer. + * + * Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * + * Neither the name of ARM nor the names of its contributors may be used + * to endorse or promote products derived from this software without specific + * prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE + * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGE. + */ + +#include <arch.h> +#include <arch_helpers.h> +#include <assert.h> +#include <bl_common.h> +#include <bl31.h> +#include <context_mgmt.h> +#include <platform.h> +#include <runtime_svc.h> +#include <stddef.h> +#include "psci_private.h" + +typedef int (*afflvl_on_handler_t)(unsigned long, + aff_map_node_t *, + unsigned long, + unsigned long); + +/******************************************************************************* + * This function checks whether a cpu which has been requested to be turned on + * is OFF to begin with. + ******************************************************************************/ +static int cpu_on_validate_state(aff_map_node_t *node) +{ + unsigned int psci_state; + + /* Get the raw psci state */ + psci_state = psci_get_state(node); + + if (psci_state == PSCI_STATE_ON || psci_state == PSCI_STATE_SUSPEND) + return PSCI_E_ALREADY_ON; + + if (psci_state == PSCI_STATE_ON_PENDING) + return PSCI_E_ON_PENDING; + + assert(psci_state == PSCI_STATE_OFF); + return PSCI_E_SUCCESS; +} + +/******************************************************************************* + * Handler routine to turn a cpu on. It takes care of any generic, architectural + * or platform specific setup required. + * TODO: Split this code across separate handlers for each type of setup? + ******************************************************************************/ +static int psci_afflvl0_on(unsigned long target_cpu, + aff_map_node_t *cpu_node, + unsigned long ns_entrypoint, + unsigned long context_id) +{ + unsigned int index, plat_state; + unsigned long psci_entrypoint; + int rc; + + /* Sanity check to safeguard against data corruption */ + assert(cpu_node->level == MPIDR_AFFLVL0); + + /* + * Generic management: Ensure that the cpu is off to be + * turned on + */ + rc = cpu_on_validate_state(cpu_node); + if (rc != PSCI_E_SUCCESS) + return rc; + + /* + * Call the cpu on handler registered by the Secure Payload Dispatcher + * to let it do any bookeeping. If the handler encounters an error, it's + * expected to assert within + */ + if (psci_spd_pm && psci_spd_pm->svc_on) + psci_spd_pm->svc_on(target_cpu); + + /* + * Arch. management: Derive the re-entry information for + * the non-secure world from the non-secure state from + * where this call originated. + */ + index = cpu_node->data; + rc = psci_set_ns_entry_info(index, ns_entrypoint, context_id); + if (rc != PSCI_E_SUCCESS) + return rc; + + /* Set the secure world (EL3) re-entry point after BL1 */ + psci_entrypoint = (unsigned long) psci_aff_on_finish_entry; + + /* State management: Set this cpu's state as ON PENDING */ + psci_set_state(cpu_node, PSCI_STATE_ON_PENDING); + + /* + * Plat. management: Give the platform the current state + * of the target cpu to allow it to perform the necessary + * steps to power on. + */ + if (psci_plat_pm_ops->affinst_on) { + + /* Get the current physical state of this cpu */ + plat_state = psci_get_phys_state(cpu_node); + rc = psci_plat_pm_ops->affinst_on(target_cpu, + psci_entrypoint, + ns_entrypoint, + cpu_node->level, + plat_state); + } + + return rc; +} + +/******************************************************************************* + * Handler routine to turn a cluster on. It takes care or any generic, arch. + * or platform specific setup required. + * TODO: Split this code across separate handlers for each type of setup? + ******************************************************************************/ +static int psci_afflvl1_on(unsigned long target_cpu, + aff_map_node_t *cluster_node, + unsigned long ns_entrypoint, + unsigned long context_id) +{ + int rc = PSCI_E_SUCCESS; + unsigned int plat_state; + unsigned long psci_entrypoint; + + assert(cluster_node->level == MPIDR_AFFLVL1); + + /* + * There is no generic and arch. specific cluster + * management required + */ + + /* State management: Is not required while turning a cluster on */ + + /* + * Plat. management: Give the platform the current state + * of the target cpu to allow it to perform the necessary + * steps to power on. + */ + if (psci_plat_pm_ops->affinst_on) { + plat_state = psci_get_phys_state(cluster_node); + psci_entrypoint = (unsigned long) psci_aff_on_finish_entry; + rc = psci_plat_pm_ops->affinst_on(target_cpu, + psci_entrypoint, + ns_entrypoint, + cluster_node->level, + plat_state); + } + + return rc; +} + +/******************************************************************************* + * Handler routine to turn a cluster of clusters on. It takes care or any + * generic, arch. or platform specific setup required. + * TODO: Split this code across separate handlers for each type of setup? + ******************************************************************************/ +static int psci_afflvl2_on(unsigned long target_cpu, + aff_map_node_t *system_node, + unsigned long ns_entrypoint, + unsigned long context_id) +{ + int rc = PSCI_E_SUCCESS; + unsigned int plat_state; + unsigned long psci_entrypoint; + + /* Cannot go beyond affinity level 2 in this psci imp. */ + assert(system_node->level == MPIDR_AFFLVL2); + + /* + * There is no generic and arch. specific system management + * required + */ + + /* State management: Is not required while turning a system on */ + + /* + * Plat. management: Give the platform the current state + * of the target cpu to allow it to perform the necessary + * steps to power on. + */ + if (psci_plat_pm_ops->affinst_on) { + plat_state = psci_get_phys_state(system_node); + psci_entrypoint = (unsigned long) psci_aff_on_finish_entry; + rc = psci_plat_pm_ops->affinst_on(target_cpu, + psci_entrypoint, + ns_entrypoint, + system_node->level, + plat_state); + } + + return rc; +} + +/* Private data structure to make this handlers accessible through indexing */ +static const afflvl_on_handler_t psci_afflvl_on_handlers[] = { + psci_afflvl0_on, + psci_afflvl1_on, + psci_afflvl2_on, +}; + +/******************************************************************************* + * This function takes an array of pointers to affinity instance nodes in the + * topology tree and calls the on handler for the corresponding affinity + * levels + ******************************************************************************/ +static int psci_call_on_handlers(mpidr_aff_map_nodes_t target_cpu_nodes, + int start_afflvl, + int end_afflvl, + unsigned long target_cpu, + unsigned long entrypoint, + unsigned long context_id) +{ + int rc = PSCI_E_INVALID_PARAMS, level; + aff_map_node_t *node; + + for (level = end_afflvl; level >= start_afflvl; level--) { + node = target_cpu_nodes[level]; + if (node == NULL) + continue; + + /* + * TODO: In case of an error should there be a way + * of undoing what we might have setup at higher + * affinity levels. + */ + rc = psci_afflvl_on_handlers[level](target_cpu, + node, + entrypoint, + context_id); + if (rc != PSCI_E_SUCCESS) + break; + } + + return rc; +} + +/******************************************************************************* + * Generic handler which is called to physically power on a cpu identified by + * its mpidr. It traverses through all the affinity levels performing generic, + * architectural, platform setup and state management e.g. for a cpu that is + * to be powered on, it will ensure that enough information is stashed for it + * to resume execution in the non-secure security state. + * + * The state of all the relevant affinity levels is changed after calling the + * affinity level specific handlers as their actions would depend upon the state + * the affinity level is currently in. + * + * The affinity level specific handlers are called in descending order i.e. from + * the highest to the lowest affinity level implemented by the platform because + * to turn on affinity level X it is neccesary to turn on affinity level X + 1 + * first. + ******************************************************************************/ +int psci_afflvl_on(unsigned long target_cpu, + unsigned long entrypoint, + unsigned long context_id, + int start_afflvl, + int end_afflvl) +{ + int rc = PSCI_E_SUCCESS; + mpidr_aff_map_nodes_t target_cpu_nodes; + unsigned long mpidr = read_mpidr() & MPIDR_AFFINITY_MASK; + + /* + * Collect the pointers to the nodes in the topology tree for + * each affinity instance in the mpidr. If this function does + * not return successfully then either the mpidr or the affinity + * levels are incorrect. + */ + rc = psci_get_aff_map_nodes(target_cpu, + start_afflvl, + end_afflvl, + target_cpu_nodes); + if (rc != PSCI_E_SUCCESS) + return rc; + + + /* + * This function acquires the lock corresponding to each affinity + * level so that by the time all locks are taken, the system topology + * is snapshot and state management can be done safely. + */ + psci_acquire_afflvl_locks(mpidr, + start_afflvl, + end_afflvl, + target_cpu_nodes); + + /* Perform generic, architecture and platform specific handling. */ + rc = psci_call_on_handlers(target_cpu_nodes, + start_afflvl, + end_afflvl, + target_cpu, + entrypoint, + context_id); + + /* + * This loop releases the lock corresponding to each affinity level + * in the reverse order to which they were acquired. + */ + psci_release_afflvl_locks(mpidr, + start_afflvl, + end_afflvl, + target_cpu_nodes); + + return rc; +} + +/******************************************************************************* + * The following functions finish an earlier affinity power on request. They + * are called by the common finisher routine in psci_common.c. + ******************************************************************************/ +static unsigned int psci_afflvl0_on_finish(unsigned long mpidr, + aff_map_node_t *cpu_node) +{ + unsigned int index, plat_state, state, rc = PSCI_E_SUCCESS; + + assert(cpu_node->level == MPIDR_AFFLVL0); + + /* Ensure we have been explicitly woken up by another cpu */ + state = psci_get_state(cpu_node); + assert(state == PSCI_STATE_ON_PENDING); + + /* + * Plat. management: Perform the platform specific actions + * for this cpu e.g. enabling the gic or zeroing the mailbox + * register. The actual state of this cpu has already been + * changed. + */ + if (psci_plat_pm_ops->affinst_on_finish) { + + /* Get the physical state of this cpu */ + plat_state = get_phys_state(state); + rc = psci_plat_pm_ops->affinst_on_finish(mpidr, + cpu_node->level, + plat_state); + assert(rc == PSCI_E_SUCCESS); + } + + /* + * Arch. management: Turn on mmu & restore architectural state + */ + bl31_plat_enable_mmu(); + + /* + * All the platform specific actions for turning this cpu + * on have completed. Perform enough arch.initialization + * to run in the non-secure address space. + */ + bl31_arch_setup(); + + /* + * Use the more complex exception vectors to enable SPD + * initialisation. SP_EL3 should point to a 'cpu_context' + * structure. The calling cpu should have set the + * context already + */ + assert(cm_get_context(mpidr, NON_SECURE)); + cm_set_next_eret_context(NON_SECURE); + cm_init_pcpu_ptr_cache(); + write_vbar_el3((uint64_t) runtime_exceptions); + + /* + * Call the cpu on finish handler registered by the Secure Payload + * Dispatcher to let it do any bookeeping. If the handler encounters an + * error, it's expected to assert within + */ + if (psci_spd_pm && psci_spd_pm->svc_on_finish) + psci_spd_pm->svc_on_finish(0); + + /* + * Generic management: Now we just need to retrieve the + * information that we had stashed away during the cpu_on + * call to set this cpu on its way. First get the index + * for restoring the re-entry info + */ + index = cpu_node->data; + psci_get_ns_entry_info(index); + + /* State management: mark this cpu as on */ + psci_set_state(cpu_node, PSCI_STATE_ON); + + /* Clean caches before re-entering normal world */ + dcsw_op_louis(DCCSW); + + return rc; +} + +static unsigned int psci_afflvl1_on_finish(unsigned long mpidr, + aff_map_node_t *cluster_node) +{ + unsigned int plat_state, rc = PSCI_E_SUCCESS; + + assert(cluster_node->level == MPIDR_AFFLVL1); + + /* + * Plat. management: Perform the platform specific actions + * as per the old state of the cluster e.g. enabling + * coherency at the interconnect depends upon the state with + * which this cluster was powered up. If anything goes wrong + * then assert as there is no way to recover from this + * situation. + */ + if (psci_plat_pm_ops->affinst_on_finish) { + + /* Get the physical state of this cluster */ + plat_state = psci_get_phys_state(cluster_node); + rc = psci_plat_pm_ops->affinst_on_finish(mpidr, + cluster_node->level, + plat_state); + assert(rc == PSCI_E_SUCCESS); + } + + /* State management: Increment the cluster reference count */ + psci_set_state(cluster_node, PSCI_STATE_ON); + + return rc; +} + + +static unsigned int psci_afflvl2_on_finish(unsigned long mpidr, + aff_map_node_t *system_node) +{ + unsigned int plat_state, rc = PSCI_E_SUCCESS; + + /* Cannot go beyond this affinity level */ + assert(system_node->level == MPIDR_AFFLVL2); + + /* + * Currently, there are no architectural actions to perform + * at the system level. + */ + + /* + * Plat. management: Perform the platform specific actions + * as per the old state of the cluster e.g. enabling + * coherency at the interconnect depends upon the state with + * which this cluster was powered up. If anything goes wrong + * then assert as there is no way to recover from this + * situation. + */ + if (psci_plat_pm_ops->affinst_on_finish) { + + /* Get the physical state of the system */ + plat_state = psci_get_phys_state(system_node); + rc = psci_plat_pm_ops->affinst_on_finish(mpidr, + system_node->level, + plat_state); + assert(rc == PSCI_E_SUCCESS); + } + + /* State management: Increment the system reference count */ + psci_set_state(system_node, PSCI_STATE_ON); + + return rc; +} + +const afflvl_power_on_finisher_t psci_afflvl_on_finishers[] = { + psci_afflvl0_on_finish, + psci_afflvl1_on_finish, + psci_afflvl2_on_finish, +}; + |