~funderscore blog cgit wiki get in touch
aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'services/std_svc/psci/psci_afflvl_on.c')
-rw-r--r--services/std_svc/psci/psci_afflvl_on.c486
1 files changed, 486 insertions, 0 deletions
diff --git a/services/std_svc/psci/psci_afflvl_on.c b/services/std_svc/psci/psci_afflvl_on.c
new file mode 100644
index 0000000..e3a1831
--- /dev/null
+++ b/services/std_svc/psci/psci_afflvl_on.c
@@ -0,0 +1,486 @@
+/*
+ * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ * Redistributions of source code must retain the above copyright notice, this
+ * list of conditions and the following disclaimer.
+ *
+ * Redistributions in binary form must reproduce the above copyright notice,
+ * this list of conditions and the following disclaimer in the documentation
+ * and/or other materials provided with the distribution.
+ *
+ * Neither the name of ARM nor the names of its contributors may be used
+ * to endorse or promote products derived from this software without specific
+ * prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <arch.h>
+#include <arch_helpers.h>
+#include <assert.h>
+#include <bl_common.h>
+#include <bl31.h>
+#include <context_mgmt.h>
+#include <platform.h>
+#include <runtime_svc.h>
+#include <stddef.h>
+#include "psci_private.h"
+
+typedef int (*afflvl_on_handler_t)(unsigned long,
+ aff_map_node_t *,
+ unsigned long,
+ unsigned long);
+
+/*******************************************************************************
+ * This function checks whether a cpu which has been requested to be turned on
+ * is OFF to begin with.
+ ******************************************************************************/
+static int cpu_on_validate_state(aff_map_node_t *node)
+{
+ unsigned int psci_state;
+
+ /* Get the raw psci state */
+ psci_state = psci_get_state(node);
+
+ if (psci_state == PSCI_STATE_ON || psci_state == PSCI_STATE_SUSPEND)
+ return PSCI_E_ALREADY_ON;
+
+ if (psci_state == PSCI_STATE_ON_PENDING)
+ return PSCI_E_ON_PENDING;
+
+ assert(psci_state == PSCI_STATE_OFF);
+ return PSCI_E_SUCCESS;
+}
+
+/*******************************************************************************
+ * Handler routine to turn a cpu on. It takes care of any generic, architectural
+ * or platform specific setup required.
+ * TODO: Split this code across separate handlers for each type of setup?
+ ******************************************************************************/
+static int psci_afflvl0_on(unsigned long target_cpu,
+ aff_map_node_t *cpu_node,
+ unsigned long ns_entrypoint,
+ unsigned long context_id)
+{
+ unsigned int index, plat_state;
+ unsigned long psci_entrypoint;
+ int rc;
+
+ /* Sanity check to safeguard against data corruption */
+ assert(cpu_node->level == MPIDR_AFFLVL0);
+
+ /*
+ * Generic management: Ensure that the cpu is off to be
+ * turned on
+ */
+ rc = cpu_on_validate_state(cpu_node);
+ if (rc != PSCI_E_SUCCESS)
+ return rc;
+
+ /*
+ * Call the cpu on handler registered by the Secure Payload Dispatcher
+ * to let it do any bookeeping. If the handler encounters an error, it's
+ * expected to assert within
+ */
+ if (psci_spd_pm && psci_spd_pm->svc_on)
+ psci_spd_pm->svc_on(target_cpu);
+
+ /*
+ * Arch. management: Derive the re-entry information for
+ * the non-secure world from the non-secure state from
+ * where this call originated.
+ */
+ index = cpu_node->data;
+ rc = psci_set_ns_entry_info(index, ns_entrypoint, context_id);
+ if (rc != PSCI_E_SUCCESS)
+ return rc;
+
+ /* Set the secure world (EL3) re-entry point after BL1 */
+ psci_entrypoint = (unsigned long) psci_aff_on_finish_entry;
+
+ /* State management: Set this cpu's state as ON PENDING */
+ psci_set_state(cpu_node, PSCI_STATE_ON_PENDING);
+
+ /*
+ * Plat. management: Give the platform the current state
+ * of the target cpu to allow it to perform the necessary
+ * steps to power on.
+ */
+ if (psci_plat_pm_ops->affinst_on) {
+
+ /* Get the current physical state of this cpu */
+ plat_state = psci_get_phys_state(cpu_node);
+ rc = psci_plat_pm_ops->affinst_on(target_cpu,
+ psci_entrypoint,
+ ns_entrypoint,
+ cpu_node->level,
+ plat_state);
+ }
+
+ return rc;
+}
+
+/*******************************************************************************
+ * Handler routine to turn a cluster on. It takes care or any generic, arch.
+ * or platform specific setup required.
+ * TODO: Split this code across separate handlers for each type of setup?
+ ******************************************************************************/
+static int psci_afflvl1_on(unsigned long target_cpu,
+ aff_map_node_t *cluster_node,
+ unsigned long ns_entrypoint,
+ unsigned long context_id)
+{
+ int rc = PSCI_E_SUCCESS;
+ unsigned int plat_state;
+ unsigned long psci_entrypoint;
+
+ assert(cluster_node->level == MPIDR_AFFLVL1);
+
+ /*
+ * There is no generic and arch. specific cluster
+ * management required
+ */
+
+ /* State management: Is not required while turning a cluster on */
+
+ /*
+ * Plat. management: Give the platform the current state
+ * of the target cpu to allow it to perform the necessary
+ * steps to power on.
+ */
+ if (psci_plat_pm_ops->affinst_on) {
+ plat_state = psci_get_phys_state(cluster_node);
+ psci_entrypoint = (unsigned long) psci_aff_on_finish_entry;
+ rc = psci_plat_pm_ops->affinst_on(target_cpu,
+ psci_entrypoint,
+ ns_entrypoint,
+ cluster_node->level,
+ plat_state);
+ }
+
+ return rc;
+}
+
+/*******************************************************************************
+ * Handler routine to turn a cluster of clusters on. It takes care or any
+ * generic, arch. or platform specific setup required.
+ * TODO: Split this code across separate handlers for each type of setup?
+ ******************************************************************************/
+static int psci_afflvl2_on(unsigned long target_cpu,
+ aff_map_node_t *system_node,
+ unsigned long ns_entrypoint,
+ unsigned long context_id)
+{
+ int rc = PSCI_E_SUCCESS;
+ unsigned int plat_state;
+ unsigned long psci_entrypoint;
+
+ /* Cannot go beyond affinity level 2 in this psci imp. */
+ assert(system_node->level == MPIDR_AFFLVL2);
+
+ /*
+ * There is no generic and arch. specific system management
+ * required
+ */
+
+ /* State management: Is not required while turning a system on */
+
+ /*
+ * Plat. management: Give the platform the current state
+ * of the target cpu to allow it to perform the necessary
+ * steps to power on.
+ */
+ if (psci_plat_pm_ops->affinst_on) {
+ plat_state = psci_get_phys_state(system_node);
+ psci_entrypoint = (unsigned long) psci_aff_on_finish_entry;
+ rc = psci_plat_pm_ops->affinst_on(target_cpu,
+ psci_entrypoint,
+ ns_entrypoint,
+ system_node->level,
+ plat_state);
+ }
+
+ return rc;
+}
+
+/* Private data structure to make this handlers accessible through indexing */
+static const afflvl_on_handler_t psci_afflvl_on_handlers[] = {
+ psci_afflvl0_on,
+ psci_afflvl1_on,
+ psci_afflvl2_on,
+};
+
+/*******************************************************************************
+ * This function takes an array of pointers to affinity instance nodes in the
+ * topology tree and calls the on handler for the corresponding affinity
+ * levels
+ ******************************************************************************/
+static int psci_call_on_handlers(mpidr_aff_map_nodes_t target_cpu_nodes,
+ int start_afflvl,
+ int end_afflvl,
+ unsigned long target_cpu,
+ unsigned long entrypoint,
+ unsigned long context_id)
+{
+ int rc = PSCI_E_INVALID_PARAMS, level;
+ aff_map_node_t *node;
+
+ for (level = end_afflvl; level >= start_afflvl; level--) {
+ node = target_cpu_nodes[level];
+ if (node == NULL)
+ continue;
+
+ /*
+ * TODO: In case of an error should there be a way
+ * of undoing what we might have setup at higher
+ * affinity levels.
+ */
+ rc = psci_afflvl_on_handlers[level](target_cpu,
+ node,
+ entrypoint,
+ context_id);
+ if (rc != PSCI_E_SUCCESS)
+ break;
+ }
+
+ return rc;
+}
+
+/*******************************************************************************
+ * Generic handler which is called to physically power on a cpu identified by
+ * its mpidr. It traverses through all the affinity levels performing generic,
+ * architectural, platform setup and state management e.g. for a cpu that is
+ * to be powered on, it will ensure that enough information is stashed for it
+ * to resume execution in the non-secure security state.
+ *
+ * The state of all the relevant affinity levels is changed after calling the
+ * affinity level specific handlers as their actions would depend upon the state
+ * the affinity level is currently in.
+ *
+ * The affinity level specific handlers are called in descending order i.e. from
+ * the highest to the lowest affinity level implemented by the platform because
+ * to turn on affinity level X it is neccesary to turn on affinity level X + 1
+ * first.
+ ******************************************************************************/
+int psci_afflvl_on(unsigned long target_cpu,
+ unsigned long entrypoint,
+ unsigned long context_id,
+ int start_afflvl,
+ int end_afflvl)
+{
+ int rc = PSCI_E_SUCCESS;
+ mpidr_aff_map_nodes_t target_cpu_nodes;
+ unsigned long mpidr = read_mpidr() & MPIDR_AFFINITY_MASK;
+
+ /*
+ * Collect the pointers to the nodes in the topology tree for
+ * each affinity instance in the mpidr. If this function does
+ * not return successfully then either the mpidr or the affinity
+ * levels are incorrect.
+ */
+ rc = psci_get_aff_map_nodes(target_cpu,
+ start_afflvl,
+ end_afflvl,
+ target_cpu_nodes);
+ if (rc != PSCI_E_SUCCESS)
+ return rc;
+
+
+ /*
+ * This function acquires the lock corresponding to each affinity
+ * level so that by the time all locks are taken, the system topology
+ * is snapshot and state management can be done safely.
+ */
+ psci_acquire_afflvl_locks(mpidr,
+ start_afflvl,
+ end_afflvl,
+ target_cpu_nodes);
+
+ /* Perform generic, architecture and platform specific handling. */
+ rc = psci_call_on_handlers(target_cpu_nodes,
+ start_afflvl,
+ end_afflvl,
+ target_cpu,
+ entrypoint,
+ context_id);
+
+ /*
+ * This loop releases the lock corresponding to each affinity level
+ * in the reverse order to which they were acquired.
+ */
+ psci_release_afflvl_locks(mpidr,
+ start_afflvl,
+ end_afflvl,
+ target_cpu_nodes);
+
+ return rc;
+}
+
+/*******************************************************************************
+ * The following functions finish an earlier affinity power on request. They
+ * are called by the common finisher routine in psci_common.c.
+ ******************************************************************************/
+static unsigned int psci_afflvl0_on_finish(unsigned long mpidr,
+ aff_map_node_t *cpu_node)
+{
+ unsigned int index, plat_state, state, rc = PSCI_E_SUCCESS;
+
+ assert(cpu_node->level == MPIDR_AFFLVL0);
+
+ /* Ensure we have been explicitly woken up by another cpu */
+ state = psci_get_state(cpu_node);
+ assert(state == PSCI_STATE_ON_PENDING);
+
+ /*
+ * Plat. management: Perform the platform specific actions
+ * for this cpu e.g. enabling the gic or zeroing the mailbox
+ * register. The actual state of this cpu has already been
+ * changed.
+ */
+ if (psci_plat_pm_ops->affinst_on_finish) {
+
+ /* Get the physical state of this cpu */
+ plat_state = get_phys_state(state);
+ rc = psci_plat_pm_ops->affinst_on_finish(mpidr,
+ cpu_node->level,
+ plat_state);
+ assert(rc == PSCI_E_SUCCESS);
+ }
+
+ /*
+ * Arch. management: Turn on mmu & restore architectural state
+ */
+ bl31_plat_enable_mmu();
+
+ /*
+ * All the platform specific actions for turning this cpu
+ * on have completed. Perform enough arch.initialization
+ * to run in the non-secure address space.
+ */
+ bl31_arch_setup();
+
+ /*
+ * Use the more complex exception vectors to enable SPD
+ * initialisation. SP_EL3 should point to a 'cpu_context'
+ * structure. The calling cpu should have set the
+ * context already
+ */
+ assert(cm_get_context(mpidr, NON_SECURE));
+ cm_set_next_eret_context(NON_SECURE);
+ cm_init_pcpu_ptr_cache();
+ write_vbar_el3((uint64_t) runtime_exceptions);
+
+ /*
+ * Call the cpu on finish handler registered by the Secure Payload
+ * Dispatcher to let it do any bookeeping. If the handler encounters an
+ * error, it's expected to assert within
+ */
+ if (psci_spd_pm && psci_spd_pm->svc_on_finish)
+ psci_spd_pm->svc_on_finish(0);
+
+ /*
+ * Generic management: Now we just need to retrieve the
+ * information that we had stashed away during the cpu_on
+ * call to set this cpu on its way. First get the index
+ * for restoring the re-entry info
+ */
+ index = cpu_node->data;
+ psci_get_ns_entry_info(index);
+
+ /* State management: mark this cpu as on */
+ psci_set_state(cpu_node, PSCI_STATE_ON);
+
+ /* Clean caches before re-entering normal world */
+ dcsw_op_louis(DCCSW);
+
+ return rc;
+}
+
+static unsigned int psci_afflvl1_on_finish(unsigned long mpidr,
+ aff_map_node_t *cluster_node)
+{
+ unsigned int plat_state, rc = PSCI_E_SUCCESS;
+
+ assert(cluster_node->level == MPIDR_AFFLVL1);
+
+ /*
+ * Plat. management: Perform the platform specific actions
+ * as per the old state of the cluster e.g. enabling
+ * coherency at the interconnect depends upon the state with
+ * which this cluster was powered up. If anything goes wrong
+ * then assert as there is no way to recover from this
+ * situation.
+ */
+ if (psci_plat_pm_ops->affinst_on_finish) {
+
+ /* Get the physical state of this cluster */
+ plat_state = psci_get_phys_state(cluster_node);
+ rc = psci_plat_pm_ops->affinst_on_finish(mpidr,
+ cluster_node->level,
+ plat_state);
+ assert(rc == PSCI_E_SUCCESS);
+ }
+
+ /* State management: Increment the cluster reference count */
+ psci_set_state(cluster_node, PSCI_STATE_ON);
+
+ return rc;
+}
+
+
+static unsigned int psci_afflvl2_on_finish(unsigned long mpidr,
+ aff_map_node_t *system_node)
+{
+ unsigned int plat_state, rc = PSCI_E_SUCCESS;
+
+ /* Cannot go beyond this affinity level */
+ assert(system_node->level == MPIDR_AFFLVL2);
+
+ /*
+ * Currently, there are no architectural actions to perform
+ * at the system level.
+ */
+
+ /*
+ * Plat. management: Perform the platform specific actions
+ * as per the old state of the cluster e.g. enabling
+ * coherency at the interconnect depends upon the state with
+ * which this cluster was powered up. If anything goes wrong
+ * then assert as there is no way to recover from this
+ * situation.
+ */
+ if (psci_plat_pm_ops->affinst_on_finish) {
+
+ /* Get the physical state of the system */
+ plat_state = psci_get_phys_state(system_node);
+ rc = psci_plat_pm_ops->affinst_on_finish(mpidr,
+ system_node->level,
+ plat_state);
+ assert(rc == PSCI_E_SUCCESS);
+ }
+
+ /* State management: Increment the system reference count */
+ psci_set_state(system_node, PSCI_STATE_ON);
+
+ return rc;
+}
+
+const afflvl_power_on_finisher_t psci_afflvl_on_finishers[] = {
+ psci_afflvl0_on_finish,
+ psci_afflvl1_on_finish,
+ psci_afflvl2_on_finish,
+};
+