/* * Multi-precision integer library * * Copyright (C) 2006-2010, Brainspark B.V. * * This file is part of PolarSSL (http://www.polarssl.org) * Lead Maintainer: Paul Bakker * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ /* * This MPI implementation is based on: * * http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf * http://www.stillhq.com/extracted/gnupg-api/mpi/ * http://math.libtomcrypt.com/files/tommath.pdf */ #include "common.h" #include #include #include #if defined(POLARSSL_BIGNUM_C) #include "bignum.h" #include "bn_mul.h" #define ciL (sizeof(t_uint)) /* chars in limb */ #define biL (ciL << 3) /* bits in limb */ #define biH (ciL << 2) /* half limb size */ /* * Convert between bits/chars and number of limbs */ #define BITS_TO_LIMBS(i) (((i) + biL - 1) / biL) #define CHARS_TO_LIMBS(i) (((i) + ciL - 1) / ciL) #define CONFIG_MALLOC_MAX (128 * 1024) //char malloc_buffer[CONFIG_MALLOC_MAX]; //static unsigned char * malloc_buffer = (unsigned char *)(0x10400000); static int malloc_addr = 0; void *mymalloc(int size) { void *p; if (malloc_addr + size > CONFIG_MALLOC_MAX) p = NULL; else //p = (char *)&malloc_buffer[0] + malloc_addr; p = (char *)(unsigned long)(0x1700000+ malloc_addr); if (p) malloc_addr += size; //ss_printf("malloc size %d/%d addr %p\n", size, malloc_addr, p); //printf("aml log : malloc_buffer=%p malloc_addr=0x%x p=%p size=%d\n", // malloc_buffer,malloc_addr,p,size); return p; } void myfree(void *ptr) { } void mymallocreset() { malloc_addr = 0; } /* * Initialize one MPI */ void mpi_init( mpi *X ) { if ( X == NULL ) return; X->s = 1; X->n = 0; X->p = NULL; } /* * Unallocate one MPI */ void mpi_free( mpi *X ) { if ( X == NULL ) return; if ( X->p != NULL ) { memset( X->p, 0, X->n * ciL ); myfree( X->p ); } X->s = 1; X->n = 0; X->p = NULL; } /* * Enlarge to the specified number of limbs */ int mpi_grow( mpi *X, size_t nblimbs ) { t_uint *p; if ( nblimbs > POLARSSL_MPI_MAX_LIMBS ) return( POLARSSL_ERR_MPI_MALLOC_FAILED ); if ( X->n < nblimbs ) { if ( ( p = (t_uint *) mymalloc( nblimbs * ciL ) ) == NULL ) return( POLARSSL_ERR_MPI_MALLOC_FAILED ); memset( p, 0, nblimbs * ciL ); if ( X->p != NULL ) { memcpy( p, X->p, X->n * ciL ); memset( X->p, 0, X->n * ciL ); myfree( X->p ); } X->n = nblimbs; X->p = p; } return( 0 ); } /* * Copy the contents of Y into X */ int mpi_copy( mpi *X, const mpi *Y ) { int ret; size_t i; if ( X == Y ) return( 0 ); for ( i = Y->n - 1; i > 0; i-- ) if ( Y->p[i] != 0 ) break; i++; X->s = Y->s; MPI_CHK( mpi_grow( X, i ) ); memset( X->p, 0, X->n * ciL ); memcpy( X->p, Y->p, i * ciL ); cleanup: return( ret ); } /* * Swap the contents of X and Y */ void mpi_swap( mpi *X, mpi *Y ) { mpi T; memcpy( &T, X, sizeof( mpi ) ); memcpy( X, Y, sizeof( mpi ) ); memcpy( Y, &T, sizeof( mpi ) ); } /* * Set value from integer */ int mpi_lset( mpi *X, t_sint z ) { int ret; MPI_CHK( mpi_grow( X, 1 ) ); memset( X->p, 0, X->n * ciL ); X->p[0] = ( z < 0 ) ? -z : z; X->s = ( z < 0 ) ? -1 : 1; cleanup: return( ret ); } /* * Get a specific bit */ int mpi_get_bit( const mpi *X, size_t pos ) { if ( X->n * biL <= pos ) return( 0 ); return ( X->p[pos / biL] >> ( pos % biL ) ) & 0x01; } /* * Set a bit to a specific value of 0 or 1 */ int mpi_set_bit( mpi *X, size_t pos, unsigned char val ) { int ret = 0; size_t off = pos / biL; size_t idx = pos % biL; if ( val != 0 && val != 1 ) return POLARSSL_ERR_MPI_BAD_INPUT_DATA; if ( X->n * biL <= pos ) { if ( val == 0 ) return ( 0 ); MPI_CHK( mpi_grow( X, off + 1 ) ); } X->p[off] = ( X->p[off] & ~( 0x01 << idx ) ) | ( val << idx ); cleanup: return( ret ); } /* * Return the number of least significant bits */ size_t mpi_lsb( const mpi *X ) { size_t i, j, count = 0; for ( i = 0; i < X->n; i++ ) for ( j = 0; j < biL; j++, count++ ) if ( ( ( X->p[i] >> j ) & 1 ) != 0 ) return( count ); return( 0 ); } /* * Return the number of most significant bits */ size_t mpi_msb( const mpi *X ) { size_t i, j; for ( i = X->n - 1; i > 0; i-- ) if ( X->p[i] != 0 ) break; for ( j = biL; j > 0; j-- ) if ( ( ( X->p[i] >> ( j - 1 ) ) & 1 ) != 0 ) break; return( ( i * biL ) + j ); } /* * Return the total size in bytes */ size_t mpi_size( const mpi *X ) { return( ( mpi_msb( X ) + 7 ) >> 3 ); } /* * Import X from unsigned binary data, big endian */ int mpi_read_binary( mpi *X, const unsigned char *buf, size_t buflen ) { int ret; size_t i, j, n; for ( n = 0; n < buflen; n++ ) if ( buf[n] != 0 ) break; MPI_CHK( mpi_grow( X, CHARS_TO_LIMBS( buflen - n ) ) ); MPI_CHK( mpi_lset( X, 0 ) ); for ( i = buflen, j = 0; i > n; i--, j++ ) X->p[j / ciL] |= ((t_uint) buf[i - 1]) << ((j % ciL) << 3); cleanup: return( ret ); } /* * Export X into unsigned binary data, big endian */ int mpi_write_binary( const mpi *X, unsigned char *buf, size_t buflen ) { size_t i, j, n; n = mpi_size( X ); if ( buflen < n ) return( POLARSSL_ERR_MPI_BUFFER_TOO_SMALL ); memset( buf, 0, buflen ); for ( i = buflen - 1, j = 0; n > 0; i--, j++, n-- ) buf[i] = (unsigned char)( X->p[j / ciL] >> ((j % ciL) << 3) ); return( 0 ); } /* * Left-shift: X <<= count */ int mpi_shift_l( mpi *X, size_t count ) { int ret; size_t i, v0, t1; t_uint r0 = 0, r1; v0 = count / (biL ); t1 = count & (biL - 1); i = mpi_msb( X ) + count; if ( X->n * biL < i ) MPI_CHK( mpi_grow( X, BITS_TO_LIMBS( i ) ) ); ret = 0; /* * shift by count / limb_size */ if ( v0 > 0 ) { for ( i = X->n; i > v0; i-- ) X->p[i - 1] = X->p[i - v0 - 1]; for ( ; i > 0; i-- ) X->p[i - 1] = 0; } /* * shift by count % limb_size */ if ( t1 > 0 ) { for ( i = v0; i < X->n; i++ ) { r1 = X->p[i] >> (biL - t1); X->p[i] <<= t1; X->p[i] |= r0; r0 = r1; } } cleanup: return( ret ); } /* * Right-shift: X >>= count */ int mpi_shift_r( mpi *X, size_t count ) { size_t i, v0, v1; t_uint r0 = 0, r1; v0 = count / biL; v1 = count & (biL - 1); if ( v0 > X->n || ( v0 == X->n && v1 > 0 ) ) return mpi_lset( X, 0 ); /* * shift by count / limb_size */ if ( v0 > 0 ) { for ( i = 0; i < X->n - v0; i++ ) X->p[i] = X->p[i + v0]; for ( ; i < X->n; i++ ) X->p[i] = 0; } /* * shift by count % limb_size */ if ( v1 > 0 ) { for ( i = X->n; i > 0; i-- ) { r1 = X->p[i - 1] << (biL - v1); X->p[i - 1] >>= v1; X->p[i - 1] |= r0; r0 = r1; } } return( 0 ); } /* * Compare unsigned values */ int mpi_cmp_abs( const mpi *X, const mpi *Y ) { size_t i, j; for ( i = X->n; i > 0; i-- ) if ( X->p[i - 1] != 0 ) break; for ( j = Y->n; j > 0; j-- ) if ( Y->p[j - 1] != 0 ) break; if ( i == 0 && j == 0 ) return( 0 ); if ( i > j ) return( 1 ) ; if ( j > i ) return( -1 ) ; for ( ; i > 0; i-- ) { if ( X->p[i - 1] > Y->p[i - 1] ) return( 1 ) ; if ( X->p[i - 1] < Y->p[i - 1] ) return( -1 ) ; } return( 0 ); } /* * Compare signed values */ int mpi_cmp_mpi( const mpi *X, const mpi *Y ) { size_t i, j; for ( i = X->n; i > 0; i-- ) if ( X->p[i - 1] != 0 ) break; for ( j = Y->n; j > 0; j-- ) if ( Y->p[j - 1] != 0 ) break; if ( i == 0 && j == 0 ) return( 0 ); if ( i > j ) return( X->s ) ; if ( j > i ) return( -Y->s ) ; if ( X->s > 0 && Y->s < 0 ) return( 1 ) ; if ( Y->s > 0 && X->s < 0 ) return( -1 ) ; for ( ; i > 0; i-- ) { if ( X->p[i - 1] > Y->p[i - 1] ) return( X->s ) ; if ( X->p[i - 1] < Y->p[i - 1] ) return( -X->s ) ; } return( 0 ); } /* * Compare signed values */ int mpi_cmp_int( const mpi *X, t_sint z ) { mpi Y; t_uint p[1]; *p = ( z < 0 ) ? -z : z; Y.s = ( z < 0 ) ? -1 : 1; Y.n = 1; Y.p = p; return( mpi_cmp_mpi( X, &Y ) ); } /* * Unsigned addition: X = |A| + |B| (HAC 14.7) */ int mpi_add_abs( mpi *X, const mpi *A, const mpi *B ) { int ret; size_t i, j; t_uint *o, *p, c; if ( X == B ) { const mpi *T = A; A = X; B = T; } if ( X != A ) MPI_CHK( mpi_copy( X, A ) ); /* * X should always be positive as a result of unsigned additions. */ X->s = 1; for ( j = B->n; j > 0; j-- ) if ( B->p[j - 1] != 0 ) break; MPI_CHK( mpi_grow( X, j ) ); o = B->p; p = X->p; c = 0; for ( i = 0; i < j; i++, o++, p++ ) { *p += c; c = ( *p < c ); *p += *o; c += ( *p < *o ); } while ( c != 0 ) { if ( i >= X->n ) { MPI_CHK( mpi_grow( X, i + 1 ) ); p = X->p + i; } *p += c; c = ( *p < c ); i++; p++; } cleanup: return( ret ); } /* * Helper for mpi substraction */ static void mpi_sub_hlp( size_t n, t_uint *s, t_uint *d ) { size_t i; t_uint c, z; for ( i = c = 0; i < n; i++, s++, d++ ) { z = ( *d < c ); *d -= c; c = ( *d < *s ) + z; *d -= *s; } while ( c != 0 ) { z = ( *d < c ); *d -= c; c = z; i++; d++; } } /* * Unsigned substraction: X = |A| - |B| (HAC 14.9) */ int mpi_sub_abs( mpi *X, const mpi *A, const mpi *B ) { mpi TB; int ret; size_t n; if ( mpi_cmp_abs( A, B ) < 0 ) return( POLARSSL_ERR_MPI_NEGATIVE_VALUE ); mpi_init( &TB ); if ( X == B ) { MPI_CHK( mpi_copy( &TB, B ) ); B = &TB; } if ( X != A ) MPI_CHK( mpi_copy( X, A ) ); /* * X should always be positive as a result of unsigned substractions. */ X->s = 1; ret = 0; for ( n = B->n; n > 0; n-- ) if ( B->p[n - 1] != 0 ) break; mpi_sub_hlp( n, B->p, X->p ); cleanup: mpi_free( &TB ); return( ret ); } /* * Signed addition: X = A + B */ int mpi_add_mpi( mpi *X, const mpi *A, const mpi *B ) { int ret, s = A->s; if ( A->s * B->s < 0 ) { if ( mpi_cmp_abs( A, B ) >= 0 ) { MPI_CHK( mpi_sub_abs( X, A, B ) ); X->s = s; } else { MPI_CHK( mpi_sub_abs( X, B, A ) ); X->s = -s; } } else { MPI_CHK( mpi_add_abs( X, A, B ) ); X->s = s; } cleanup: return( ret ); } /* * Signed substraction: X = A - B */ int mpi_sub_mpi( mpi *X, const mpi *A, const mpi *B ) { int ret, s = A->s; if ( A->s * B->s > 0 ) { if ( mpi_cmp_abs( A, B ) >= 0 ) { MPI_CHK( mpi_sub_abs( X, A, B ) ); X->s = s; } else { MPI_CHK( mpi_sub_abs( X, B, A ) ); X->s = -s; } } else { MPI_CHK( mpi_add_abs( X, A, B ) ); X->s = s; } cleanup: return( ret ); } /* * Signed addition: X = A + b */ int mpi_add_int( mpi *X, const mpi *A, t_sint b ) { mpi _B; t_uint p[1]; p[0] = ( b < 0 ) ? -b : b; _B.s = ( b < 0 ) ? -1 : 1; _B.n = 1; _B.p = p; return( mpi_add_mpi( X, A, &_B ) ); } /* * Signed substraction: X = A - b */ int mpi_sub_int( mpi *X, const mpi *A, t_sint b ) { mpi _B; t_uint p[1]; p[0] = ( b < 0 ) ? -b : b; _B.s = ( b < 0 ) ? -1 : 1; _B.n = 1; _B.p = p; return( mpi_sub_mpi( X, A, &_B ) ); } /* * Helper for mpi multiplication */ static void mpi_mul_hlp( size_t i, t_uint *s, t_uint *d, t_uint b ) { t_uint c = 0, t = 0; #if defined(MULADDC_HUIT) for ( ; i >= 8; i -= 8 ) { MULADDC_INIT MULADDC_HUIT MULADDC_STOP } for ( ; i > 0; i-- ) { MULADDC_INIT MULADDC_CORE MULADDC_STOP } #else for ( ; i >= 16; i -= 16 ) { MULADDC_INIT MULADDC_CORE MULADDC_CORE MULADDC_CORE MULADDC_CORE MULADDC_CORE MULADDC_CORE MULADDC_CORE MULADDC_CORE MULADDC_CORE MULADDC_CORE MULADDC_CORE MULADDC_CORE MULADDC_CORE MULADDC_CORE MULADDC_CORE MULADDC_CORE MULADDC_STOP } for ( ; i >= 8; i -= 8 ) { MULADDC_INIT MULADDC_CORE MULADDC_CORE MULADDC_CORE MULADDC_CORE MULADDC_CORE MULADDC_CORE MULADDC_CORE MULADDC_CORE MULADDC_STOP } for ( ; i > 0; i-- ) { MULADDC_INIT MULADDC_CORE MULADDC_STOP } #endif t++; do { *d += c; c = ( *d < c ); d++; } while ( c != 0 ) ; } /* * Baseline multiplication: X = A * B (HAC 14.12) */ int mpi_mul_mpi( mpi *X, const mpi *A, const mpi *B ) { int ret; size_t i, j; mpi TA, TB; mpi_init( &TA ); mpi_init( &TB ); if ( X == A ) { MPI_CHK( mpi_copy( &TA, A ) ) ; A = &TA; } if ( X == B ) { MPI_CHK( mpi_copy( &TB, B ) ) ; B = &TB; } for ( i = A->n; i > 0; i-- ) if ( A->p[i - 1] != 0 ) break; for ( j = B->n; j > 0; j-- ) if ( B->p[j - 1] != 0 ) break; MPI_CHK( mpi_grow( X, i + j ) ); MPI_CHK( mpi_lset( X, 0 ) ); for ( i++; j > 0; j-- ) mpi_mul_hlp( i - 1, A->p, X->p + j - 1, B->p[j - 1] ); X->s = A->s * B->s; cleanup: mpi_free( &TB ); mpi_free( &TA ); return( ret ); } /* * Baseline multiplication: X = A * b */ int mpi_mul_int( mpi *X, const mpi *A, t_sint b ) { mpi _B; t_uint p[1]; _B.s = 1; _B.n = 1; _B.p = p; p[0] = b; return( mpi_mul_mpi( X, A, &_B ) ); } /* * Division by mpi: A = Q * B + R (HAC 14.20) */ int mpi_div_mpi( mpi *Q, mpi *R, const mpi *A, const mpi *B ) { int ret; size_t i, n, t, k; mpi X, Y, Z, T1, T2; if ( mpi_cmp_int( B, 0 ) == 0 ) return( POLARSSL_ERR_MPI_DIVISION_BY_ZERO ); mpi_init( &X ); mpi_init( &Y ); mpi_init( &Z ); mpi_init( &T1 ); mpi_init( &T2 ); if ( mpi_cmp_abs( A, B ) < 0 ) { if ( Q != NULL ) MPI_CHK( mpi_lset( Q, 0 ) ) ; if ( R != NULL ) MPI_CHK( mpi_copy( R, A ) ) ; return( 0 ); } MPI_CHK( mpi_copy( &X, A ) ); MPI_CHK( mpi_copy( &Y, B ) ); X.s = Y.s = 1; MPI_CHK( mpi_grow( &Z, A->n + 2 ) ); MPI_CHK( mpi_lset( &Z, 0 ) ); MPI_CHK( mpi_grow( &T1, 2 ) ); MPI_CHK( mpi_grow( &T2, 3 ) ); k = mpi_msb( &Y ) % biL; if ( k < biL - 1 ) { k = biL - 1 - k; MPI_CHK( mpi_shift_l( &X, k ) ); MPI_CHK( mpi_shift_l( &Y, k ) ); } else k = 0; n = X.n - 1; t = Y.n - 1; MPI_CHK( mpi_shift_l( &Y, biL * (n - t) ) ); while ( mpi_cmp_mpi( &X, &Y ) >= 0 ) { Z.p[n - t]++; mpi_sub_mpi( &X, &X, &Y ); } mpi_shift_r( &Y, biL * (n - t) ); for ( i = n; i > t ; i-- ) { if ( X.p[i] >= Y.p[t] ) Z.p[i - t - 1] = ~0; else { #if defined(POLARSSL_HAVE_UDBL) t_udbl r; r = (t_udbl) X.p[i] << biL; r |= (t_udbl) X.p[i - 1]; r /= Y.p[t]; if ( r > ((t_udbl) 1 << biL) - 1) r = ((t_udbl) 1 << biL) - 1; Z.p[i - t - 1] = (t_uint) r; #else /* * __udiv_qrnnd_c, from gmp/longlong.h */ t_uint q0, q1, r0, r1; t_uint d0, d1, d, m; d = Y.p[t]; d0 = ( d << biH ) >> biH; d1 = ( d >> biH ); q1 = X.p[i] / d1; r1 = X.p[i] - d1 * q1; r1 <<= biH; r1 |= ( X.p[i - 1] >> biH ); m = q1 * d0; if ( r1 < m ) { q1--, r1 += d; while ( r1 >= d && r1 < m ) q1--, r1 += d; } r1 -= m; q0 = r1 / d1; r0 = r1 - d1 * q0; r0 <<= biH; r0 |= ( X.p[i - 1] << biH ) >> biH; m = q0 * d0; if ( r0 < m ) { q0--, r0 += d; while ( r0 >= d && r0 < m ) q0--, r0 += d; } r0 -= m; Z.p[i - t - 1] = ( q1 << biH ) | q0; #endif } Z.p[i - t - 1]++; do { Z.p[i - t - 1]--; MPI_CHK( mpi_lset( &T1, 0 ) ); T1.p[0] = (t < 1) ? 0 : Y.p[t - 1]; T1.p[1] = Y.p[t]; MPI_CHK( mpi_mul_int( &T1, &T1, Z.p[i - t - 1] ) ); MPI_CHK( mpi_lset( &T2, 0 ) ); T2.p[0] = (i < 2) ? 0 : X.p[i - 2]; T2.p[1] = (i < 1) ? 0 : X.p[i - 1]; T2.p[2] = X.p[i]; } while ( mpi_cmp_mpi( &T1, &T2 ) > 0 ) ; MPI_CHK( mpi_mul_int( &T1, &Y, Z.p[i - t - 1] ) ); MPI_CHK( mpi_shift_l( &T1, biL * (i - t - 1) ) ); MPI_CHK( mpi_sub_mpi( &X, &X, &T1 ) ); if ( mpi_cmp_int( &X, 0 ) < 0 ) { MPI_CHK( mpi_copy( &T1, &Y ) ); MPI_CHK( mpi_shift_l( &T1, biL * (i - t - 1) ) ); MPI_CHK( mpi_add_mpi( &X, &X, &T1 ) ); Z.p[i - t - 1]--; } } if ( Q != NULL ) { mpi_copy( Q, &Z ); Q->s = A->s * B->s; } if ( R != NULL ) { mpi_shift_r( &X, k ); X.s = A->s; mpi_copy( R, &X ); if ( mpi_cmp_int( R, 0 ) == 0 ) R->s = 1; } cleanup: mpi_free( &X ); mpi_free( &Y ); mpi_free( &Z ); mpi_free( &T1 ); mpi_free( &T2 ); return( ret ); } /* * Modulo: R = A mod B */ int mpi_mod_mpi( mpi *R, const mpi *A, const mpi *B ) { int ret; if ( mpi_cmp_int( B, 0 ) < 0 ) return POLARSSL_ERR_MPI_NEGATIVE_VALUE; MPI_CHK( mpi_div_mpi( NULL, R, A, B ) ); while ( mpi_cmp_int( R, 0 ) < 0 ) MPI_CHK( mpi_add_mpi( R, R, B ) ); while ( mpi_cmp_mpi( R, B ) >= 0 ) MPI_CHK( mpi_sub_mpi( R, R, B ) ); cleanup: return( ret ); } /* * Modulo: r = A mod b */ int mpi_mod_int( t_uint *r, const mpi *A, t_sint b ) { size_t i; t_uint x, y, z; if ( b == 0 ) return( POLARSSL_ERR_MPI_DIVISION_BY_ZERO ); if ( b < 0 ) return POLARSSL_ERR_MPI_NEGATIVE_VALUE; /* * handle trivial cases */ if ( b == 1 ) { *r = 0; return( 0 ); } if ( b == 2 ) { *r = A->p[0] & 1; return( 0 ); } /* * general case */ for ( i = A->n, y = 0; i > 0; i-- ) { x = A->p[i - 1]; y = ( y << biH ) | ( x >> biH ); z = y / b; y -= z * b; x <<= biH; y = ( y << biH ) | ( x >> biH ); z = y / b; y -= z * b; } /* * If A is negative, then the current y represents a negative value. * Flipping it to the positive side. */ if ( A->s < 0 && y != 0 ) y = b - y; *r = y; return( 0 ); } /* * Fast Montgomery initialization (thanks to Tom St Denis) */ static void mpi_montg_init( t_uint *mm, const mpi *N ) { t_uint x, m0 = N->p[0]; x = m0; x += ( ( m0 + 2 ) & 4 ) << 1; x *= ( 2 - ( m0 * x ) ); if ( biL >= 16 ) x *= ( 2 - ( m0 * x ) ) ; if ( biL >= 32 ) x *= ( 2 - ( m0 * x ) ) ; if ( biL >= 64 ) x *= ( 2 - ( m0 * x ) ) ; *mm = ~x + 1; } /* * Montgomery multiplication: A = A * B * R^-1 mod N (HAC 14.36) */ static void mpi_montmul( mpi *A, const mpi *B, const mpi *N, t_uint mm, const mpi *T ) { size_t i, n, m; t_uint u0, u1, *d; memset( T->p, 0, T->n * ciL ); d = T->p; n = N->n; m = ( B->n < n ) ? B->n : n; for ( i = 0; i < n; i++ ) { /* * T = (T + u0*B + u1*N) / 2^biL */ u0 = A->p[i]; u1 = ( d[0] + u0 * B->p[0] ) * mm; mpi_mul_hlp( m, B->p, d, u0 ); mpi_mul_hlp( n, N->p, d, u1 ); *d++ = u0; d[n + 1] = 0; } memcpy( A->p, d, (n + 1) * ciL ); if ( mpi_cmp_abs( A, N ) >= 0 ) mpi_sub_hlp( n, N->p, A->p ); else /* prevent timing attacks */ mpi_sub_hlp( n, A->p, T->p ); } /* * Montgomery reduction: A = A * R^-1 mod N */ static void mpi_montred( mpi *A, const mpi *N, t_uint mm, const mpi *T ) { t_uint z = 1; mpi U; U.n = U.s = (int) z; U.p = &z; mpi_montmul( A, &U, N, mm, T ); } /* * Sliding-window exponentiation: X = A^E mod N (HAC 14.85) */ int mpi_exp_mod( mpi *X, const mpi *A, const mpi *E, const mpi *N, mpi *_RR ) { int ret; size_t wbits, wsize, one = 1; size_t i, j, nblimbs; size_t bufsize, nbits; t_uint ei, mm, state; mpi RR, T, W[ 2 << POLARSSL_MPI_WINDOW_SIZE ], Apos; int neg; if ( mpi_cmp_int( N, 0 ) < 0 || ( N->p[0] & 1 ) == 0 ) return( POLARSSL_ERR_MPI_BAD_INPUT_DATA ); if ( mpi_cmp_int( E, 0 ) < 0 ) return( POLARSSL_ERR_MPI_BAD_INPUT_DATA ); /* * Init temps and window size */ mpi_montg_init( &mm, N ); mpi_init( &RR ); mpi_init( &T ); memset( W, 0, sizeof( W ) ); i = mpi_msb( E ); wsize = ( i > 671 ) ? 6 : ( i > 239 ) ? 5 : ( i > 79 ) ? 4 : ( i > 23 ) ? 3 : 1; if ( wsize > POLARSSL_MPI_WINDOW_SIZE ) wsize = POLARSSL_MPI_WINDOW_SIZE; j = N->n + 1; MPI_CHK( mpi_grow( X, j ) ); MPI_CHK( mpi_grow( &W[1], j ) ); MPI_CHK( mpi_grow( &T, j * 2 ) ); /* * Compensate for negative A (and correct at the end) */ neg = ( A->s == -1 ); mpi_init( &Apos ); if ( neg ) { MPI_CHK( mpi_copy( &Apos, A ) ); Apos.s = 1; A = &Apos; } /* * If 1st call, pre-compute R^2 mod N */ if ( _RR == NULL || _RR->p == NULL ) { MPI_CHK( mpi_lset( &RR, 1 ) ); MPI_CHK( mpi_shift_l( &RR, N->n * 2 * biL ) ); MPI_CHK( mpi_mod_mpi( &RR, &RR, N ) ); if ( _RR != NULL ) memcpy( _RR, &RR, sizeof( mpi ) ); } else memcpy( &RR, _RR, sizeof( mpi ) ); /* * W[1] = A * R^2 * R^-1 mod N = A * R mod N */ if ( mpi_cmp_mpi( A, N ) >= 0 ) mpi_mod_mpi( &W[1], A, N ); else mpi_copy( &W[1], A ); mpi_montmul( &W[1], &RR, N, mm, &T ); /* * X = R^2 * R^-1 mod N = R mod N */ MPI_CHK( mpi_copy( X, &RR ) ); mpi_montred( X, N, mm, &T ); if ( wsize > 1 ) { /* * W[1 << (wsize - 1)] = W[1] ^ (wsize - 1) */ j = one << (wsize - 1); MPI_CHK( mpi_grow( &W[j], N->n + 1 ) ); MPI_CHK( mpi_copy( &W[j], &W[1] ) ); for ( i = 0; i < wsize - 1; i++ ) mpi_montmul( &W[j], &W[j], N, mm, &T ); /* * W[i] = W[i - 1] * W[1] */ for ( i = j + 1; i < (one << wsize); i++ ) { MPI_CHK( mpi_grow( &W[i], N->n + 1 ) ); MPI_CHK( mpi_copy( &W[i], &W[i - 1] ) ); mpi_montmul( &W[i], &W[1], N, mm, &T ); } } nblimbs = E->n; bufsize = 0; nbits = 0; wbits = 0; state = 0; while ( 1 ) { if ( bufsize == 0 ) { if ( nblimbs-- == 0 ) break; bufsize = sizeof( t_uint ) << 3; } bufsize--; ei = (E->p[nblimbs] >> bufsize) & 1; /* * skip leading 0s */ if ( ei == 0 && state == 0 ) continue; if ( ei == 0 && state == 1 ) { /* * out of window, square X */ mpi_montmul( X, X, N, mm, &T ); continue; } /* * add ei to current window */ state = 2; nbits++; wbits |= (ei << (wsize - nbits)); if ( nbits == wsize ) { /* * X = X^wsize R^-1 mod N */ for ( i = 0; i < wsize; i++ ) mpi_montmul( X, X, N, mm, &T ); /* * X = X * W[wbits] R^-1 mod N */ mpi_montmul( X, &W[wbits], N, mm, &T ); state--; nbits = 0; wbits = 0; } } /* * process the remaining bits */ for ( i = 0; i < nbits; i++ ) { mpi_montmul( X, X, N, mm, &T ); wbits <<= 1; if ( (wbits & (one << wsize)) != 0 ) mpi_montmul( X, &W[1], N, mm, &T ); } /* * X = A^E * R * R^-1 mod N = A^E mod N */ mpi_montred( X, N, mm, &T ); if ( neg ) { X->s = -1; mpi_add_mpi( X, N, X ); } cleanup: for ( i = (one << (wsize - 1)); i < (one << wsize); i++ ) mpi_free( &W[i] ); mpi_free( &W[1] ); mpi_free( &T ); mpi_free( &Apos ); if ( _RR == NULL ) mpi_free( &RR ); return( ret ); } #endif