/* * Copyright (c) 2015 Amlogic, Inc. All rights reserved. * * This source code is subject to the terms and conditions defined in the * file 'LICENSE' which is part of this source code package. * * * Amlogic nand spl module * Author: nand team @amlogic.com * Created time: 2015.04.28 * */ #include #include #include #include #include #include #include #include #include #include #include #include //#define NFIO_LINE do { printf("%s %d\n", __func__, __LINE__); } while(0); #define NFIO_LINE /* global */ nand_setup_t glb_setup; // 8 bytes ext_info_t glb_ext_info = { .read_info = 0, .new_type = 0, .xlc = 0, }; unsigned char page_list_hynix_1y[128] = { 0x00, 0x01, 0x03, 0x05, 0x07, 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17, 0x19, 0x1b, 0x1d, 0x1f, 0x21, 0x23, 0x25, 0x27, 0x29, 0x2b, 0x2d, 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f, 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57, 0x59, 0x5b, 0x5d, 0x5f, 0x61, 0x63, 0x65, 0x67, 0x69, 0x6b, 0x6d, 0x6f, 0x71, 0x73, 0x75, 0x77, 0x79, 0x7b, 0x7d, 0x7f, 0x81, 0x83, 0x85, 0x87, 0x89, 0x8b, 0x8d, 0x8f, 0x91, 0x93, 0x95, 0x97, 0x99, 0x9b, 0x9d, 0x9f, 0xa1, 0xA3, 0xA5, 0xA7, 0xA9, 0xAb, 0xAd, 0xAf, 0xb1, 0xB3, 0xB5, 0xB7, 0xB9, 0xBb, 0xBd, 0xBf, 0xc1, 0xC3, 0xC5, 0xC7, 0xC9, 0xCb, 0xCd, 0xCf, 0xd1, 0xD3, 0xD5, 0xD7, 0xD9, 0xDb, 0xDd, 0xDf, 0xe1, 0xE3, 0xE5, 0xE7, 0xE9, 0xEb, 0xEd, 0xEf, 0xf1, 0xF3, 0xF5, 0xF7, 0xF9, 0xFb, 0xFd, }; unsigned char page_list_hynix_2x[128] = { 0x00, 0x01, 0x02, 0x03, 0x06, 0x07, 0x0A, 0x0B, 0x0E, 0x0F, 0x12, 0x13, 0x16, 0x17, 0x1A, 0x1B, 0x1E, 0x1F, 0x22, 0x23, 0x26, 0x27, 0x2A, 0x2B, 0x2E, 0x2F, 0x32, 0x33, 0x36, 0x37, 0x3A, 0x3B, 0x3E, 0x3F, 0x42, 0x43, 0x46, 0x47, 0x4A, 0x4B, 0x4E, 0x4F, 0x52, 0x53, 0x56, 0x57, 0x5A, 0x5B, 0x5E, 0x5F, 0x62, 0x63, 0x66, 0x67, 0x6A, 0x6B, 0x6E, 0x6F, 0x72, 0x73, 0x76, 0x77, 0x7A, 0x7B, 0x7E, 0x7F, 0x82, 0x83, 0x86, 0x87, 0x8A, 0x8B, 0x8E, 0x8F, 0x92, 0x93, 0x96, 0x97, 0x9A, 0x9B, 0x9E, 0x9F, 0xA2, 0xA3, 0xA6, 0xA7, 0xAA, 0xAB, 0xAE, 0xAF, 0xB2, 0xB3, 0xB6, 0xB7, 0xBA, 0xBB, 0xBE, 0xBF, 0xC2, 0xC3, 0xC6, 0xC7, 0xCA, 0xCB, 0xCE, 0xCF, 0xD2, 0xD3, 0xD6, 0xD7, 0xDA, 0xDB, 0xDE, 0xDF, 0xE2, 0xE3, 0xE6, 0xE7, 0xEA, 0xEB, 0xEE, 0xEF, 0xF2, 0xF3, 0xF6, 0xF7, 0xFA, 0xFB, }; //#define PRINT printf #if 0 static void _dump_mem_u8(uint8_t * buf, uint32_t len) { uint32_t i; PRINT("%s, %p, %d", __func__, buf, len); for (i = 0; i < len/sizeof(uint8_t); i++) { if ( i % 16 == 0) PRINT("\n0x%p: ", buf+i); PRINT("%02x ", buf[i]); } PRINT("\n"); return; } #endif //0 void nfio_pin_mux(void) { *P_PAD_PULL_UP_EN_REG2 = 0xffff87ff; *P_PAD_PULL_UP_REG2 = 0xffff8700; *P_PERIPHS_PIN_MUX_4 = (1<<31) | (1<<30) | (0x3ff<<20); } uint32_t nfio_reset(void) { uint32_t tmp; // Reset NAND controller (*P_NAND_CMD) = (1<<31); // Reset NAND (*P_NAND_CMD) = (CE0 | IDLE); (*P_NAND_CMD) = (CE0 | CLE | 0xff); (*P_NAND_CMD) = (CE0 | IDLE | 10); // nand cycle = 200ns. // Set time out 2^13* nand cycle, 1.7ms if ( glb_setup.cfg.b.no_rb ) { // without RB (*P_NAND_CMD) = (CE0 | CLE | 0x70); (*P_NAND_CMD) = (CE0 | IDLE | 2); (*P_NAND_CMD) = (IO6 | RB | 13); } else { // with RB *P_NAND_CMD = (CE0 | RB | 13); } (*P_NAND_CMD) = (CE0 | IDLE); (*P_NAND_CMD) = (CE0 | IDLE); // if NAND is not installed or Reset failed, // the RB time out is set. while (((tmp = (*P_NAND_CMD))>>22&0x1f) > 0) { if (tmp>>27&1) { // time out (*P_NAND_CMD) = (1<<31); return ERROR_NAND_TIMEOUT; } } return 0; } /* * read nand manufactor id into retry info. */ static uint16_t _read_id(void) { uint16_t id; (*P_NAND_CMD) = (CE0 | IDLE); (*P_NAND_CMD) = (CE0 | CLE | 0x90); (*P_NAND_CMD) = (CE0 | IDLE | 3); (*P_NAND_CMD) = (CE0 | ALE | 0); (*P_NAND_CMD) = (CE0 | IDLE | 3); (*P_NAND_CMD) = (CE0 | DRD | 3); (*P_NAND_CMD) = (CE0 | IDLE); (*P_NAND_CMD) = (CE0 | IDLE); while (((*P_NAND_CMD)>>22&0x1f) > 0); id = (*P_NAND_BUF)&0xff; return id; } static void _set_retry(uint16_t id) { switch (glb_setup.id) { case NAND_MFR_MICRON : glb_setup.max = 8; break; case NAND_MFR_TOSHIBA : glb_setup.max = 8; break; case NAND_MFR_SAMSUNG : glb_setup.max = 15; break; case NAND_MFR_SANDISK : glb_setup.max = 22; break; case NAND_MFR_HYNIX : case NAND_MFR_FUJITSU : case NAND_MFR_NATIONAL : case NAND_MFR_RENESAS : case NAND_MFR_STMICRO : case NAND_MFR_AMD : case NAND_MFR_INTEL : glb_setup.max = 0; break; default : glb_setup.max = 0; break; } } // toshiba retry ------------------------------------------ // 0 : pre condition + retry 0. // 1~6 : valid retry, otherwise no action. // 7, 0xff : exit, back to normal. // loop from 0 to 7, total 8. void read_retry_toshiba(uint32_t retry, uint32_t *cmd) { unsigned char val[] = { 0x04, 0x04, 0x7C, 0x7E, 0x00, 0x7C, 0x78, 0x78, 0x7C, 0x76, 0x74, 0x72, 0x08, 0x08, 0x00, 0x00, 0x0B, 0x7E, 0x76, 0x74, 0x10, 0x76, 0x72, 0x70, 0x02, 0x00, 0x7E, 0x7C, 0x00, 0x00, 0x00, 0x00}; uint32_t i, k, retry_val_idx; i = 0; if (retry == 7) retry = 0xff; retry_val_idx = retry == 0xff ? 7 : retry; if (retry_val_idx < 8) { // pre condition, send before first. if (retry == 0) { cmd[i++] = (CE0 | CLE | 0x5c); cmd[i++] = (CE0 | CLE | 0xc5); cmd[i++] = (CE0 | IDLE); } for (k=4; k<8; k++) { cmd[i++] = (CE0 | CLE | 0x55); cmd[i++] = (CE0 | IDLE | 2); //Tcalsv cmd[i++] = (CE0 | ALE | k); cmd[i++] = (CE0 | IDLE | 2); //Tcalsv cmd[i++] = (CE0 | DWR | val[retry_val_idx*4 + k-4]); cmd[i++] = (CE0 | IDLE); } cmd[i++] = (CE0 | CLE | 0x55); cmd[i++] = (CE0 | IDLE | 2); //Tcalsv cmd[i++] = (CE0 | ALE | 0xd); cmd[i++] = (CE0 | IDLE | 2); //Tcalsv cmd[i++] = (CE0 | DWR | 0); cmd[i++] = (CE0 | IDLE); if (retry == 6) { cmd[i++] = (CE0 | CLE | 0xb3); cmd[i++] = (CE0 | IDLE); } if (retry != 0xff) { cmd[i++] = (CE0 | CLE | 0x26); cmd[i++] = (CE0 | CLE | 0x5d); cmd[i++] = (CE0 | IDLE); } } // exit and check rb if (retry == 0xff) { cmd[i++] = (CE0 | CLE | 0xff); cmd[i++] = (CE0 | IDLE | 2); //Twb if (glb_setup.cfg.b.no_rb) { cmd[i++] = (CE0 | CLE | 0x70); cmd[i++] = (CE0 | IDLE | 2); cmd[i++] = (IO6 | RB | 13); } else{ cmd[i++] = (CE0 | RB | 13); } } cmd[i] = 0; } // sandisk retry ------------------------------------------ // 0 : activation + retry 0. // 1~20 : valid retry, otherwise no action. // 21, 0xff : exit // loop from 0 to 21, total 22. void read_retry_sandisk(uint32_t retry, uint32_t *cmd) { uint32_t i, k; unsigned char val[] = { 0x00, 0x00, 0x00, 0xf0, 0xf0, 0xf0, 0xef, 0xe0, 0xe0, 0xdf, 0xd0, 0xd0, 0x1e, 0xe0, 0x10, 0x2e, 0xd0, 0x20, 0x3d, 0xf0, 0x30, 0xcd, 0xe0, 0xd0, 0x0d, 0xd0, 0x10, 0x01, 0x10, 0x20, 0x12, 0x20, 0x20, 0xb2, 0x10, 0xd0, 0xa3, 0x20, 0xd0, 0x9f, 0x00, 0xd0, 0xbe, 0xf0, 0xc0, 0xad, 0xc0, 0xc0, 0x9f, 0xf0, 0xc0, 0x01, 0x00, 0x00, 0x02, 0x00, 0x00, 0x0d, 0xb0, 0x00, 0x0c, 0xa0, 0x00}; i = 0; if (retry == 21) retry = 0xff; if (retry == 0) { // activation and init, entry 0. cmd[i++] = (CE0 | CLE | 0x3b); cmd[i++] = (CE0 | CLE | 0xb9); for (k=4; k<13; k++) { cmd[i++] = (CE0 | CLE | 0x54); cmd[i++] = (CE0 | ALE | k); cmd[i++] = (CE0 | DWR | 0); } cmd[i++] = (CE0 | CLE | 0xb6); } else if (retry < 21) { // entry: 1~20 cmd[i++] = (CE0 | CLE | 0x3b); cmd[i++] = (CE0 | CLE | 0xb9); for (k=0; k<3; k++) { cmd[i++] = (CE0 | CLE | 0x54); cmd[i++] = (CE0 | ALE | (k==0?4:k==1?5:7)); cmd[i++] = (CE0 | DWR | val[retry*3+k]); } cmd[i++] = (CE0 | CLE | 0xb6); } else if (retry == 255) { cmd[i++] = (CE0 | CLE | 0x3b); cmd[i++] = (CE0 | CLE | 0xb9); for (k=0; k<3; k++) { cmd[i++] = (CE0 | CLE | 0x54); cmd[i++] = (CE0 | ALE | (k==0?4:k==1?5:7)); cmd[i++] = (CE0 | DWR | 0); } cmd[i++] = (CE0 | CLE | 0xd6); } cmd[i] = 0; } // micron retry ------------------------------------------ // 0 : disable // 1~7 : valid retry, otherwise no action. // 0xff : same as 0. // loop from 0 to 7, total 8. void read_retry_micron(uint32_t retry, uint32_t *cmd) { uint32_t i; i = 0; if (retry == 0xff) retry = 0; if (retry < 8) { cmd[i++] = (CE0 | CLE | 0xef); cmd[i++] = (CE0 | ALE | 0x89); cmd[i++] = (CE0 | IDLE | 3); //Tadl cmd[i++] = (CE0 | DWR | retry); cmd[i++] = (CE0 | DWR | 0); cmd[i++] = (CE0 | DWR | 0); cmd[i++] = (CE0 | DWR | 0); cmd[i++] = (CE0 | IDLE | 2); //Twb //check rb for Tfeat if (glb_setup.cfg.b.no_rb) { cmd[i++] = (CE0 | CLE | 0x70); cmd[i++] = (CE0 | IDLE | 2); cmd[i++] = (IO6 | RB | 13); } else{ cmd[i++] = (CE0 | RB | 13); } } cmd[i] = 0; } void read_retry_hynix(uint32_t retry, uint32_t *cmd) { // use SLC mode. } // samsung retry ------------------------------------------ // 0 : disable // 1~14 : valid retry, otherwise no action. // 0xff : same as 0. // loop from 0 to 14, total 15. void read_retry_samsung(uint32_t retry, uint32_t *cmd) { uint32_t i, k; unsigned char adr[] = { 0xa7, 0xa4, 0xa5, 0xa6}; unsigned char val[] = { 0x00, 0x00, 0x00, 0x00, 0x05, 0x0A, 0x00, 0x00, 0x28, 0x00, 0xEC, 0xD8, 0xED, 0xF5, 0xED, 0xE6, 0x0A, 0x0F, 0x05, 0x00, 0x0F, 0x0A, 0xFB, 0xEC, 0xE8, 0xEF, 0xE8, 0xDC, 0xF1, 0xFB, 0xFE, 0xF0, 0x0A, 0x00, 0xFB, 0xEC, 0xD0, 0xE2, 0xD0, 0xC2, 0x14, 0x0F, 0xFB, 0xEC, 0xE8, 0xFB, 0xE8, 0xDC, 0x1E, 0x14, 0xFB, 0xEC, 0xFB, 0xFF, 0xFB, 0xF8, 0x07, 0x0C, 0x02, 0x00}; i = 0; if (retry == 0xff) retry = 0; if (retry < 15) { for (k=0; k<4; k++) { cmd[i++] = (CE0 | CLE | 0xa1); cmd[i++] = (CE0 | ALE | 0); cmd[i++] = (CE0 | ALE | adr[k]); cmd[i++] = (CE0 | IDLE | 2); //Tadl cmd[i++] = (CE0 | DWR | val[retry*4+k]); cmd[i++] = (CE0 | IDLE | 8); //over 300ns before next cmd } } cmd[i] = 0; } void nfio_read_retry(uint32_t mode) { static uint32_t retry = 0; uint32_t i, cmd[128]; if (glb_setup.max == 0) return; switch (glb_setup.id) { case NAND_MFR_MICRON: NFIO_LINE read_retry_micron(retry, cmd); break; case NAND_MFR_TOSHIBA: read_retry_toshiba(retry, cmd); break; case NAND_MFR_HYNIX: read_retry_hynix(retry, cmd); break; case NAND_MFR_SAMSUNG: read_retry_samsung(retry, cmd); break; case NAND_MFR_SANDISK: read_retry_sandisk(retry, cmd); break; /* todo, add other read retry here! */ } retry = retry+1 < glb_setup.max ? retry+1 : 0; i = 0; while (((*P_NAND_CMD)>>22&0x1f)<0x1f && cmd[i] != 0) { (*P_NAND_CMD) = cmd[i++]; } } // read one page uint32_t nfio_page_read(uint32_t src, uint32_t mem) { uint32_t k, ecc_pages; uint32_t info; uint64_t mem_addr; uint32_t info_adr = NAND_INFO_BUF; //use romboot's buffer. uint64_t info_adr64; uint64_t * p_info_buf; volatile uint64_t dma_done; ecc_pages = glb_setup.cfg.b.cmd&0x3f; NFIO_LINE info_adr64 = (uint64_t) info_adr; p_info_buf = (uint64_t *)info_adr64; memset(p_info_buf, 0, ecc_pages * INFO_BYTE_PER_ECCPAGE); flush_dcache_range((uint64_t)p_info_buf, (uint64_t)(ecc_pages * sizeof(uint64_t))); while (((*P_NAND_CMD)>>22&0x1f) > 0); NFIO_LINE // add A2H command for SLC read if ( glb_setup.cfg.b.a2 ) { (*P_NAND_CMD) = (CE0 | IDLE); (*P_NAND_CMD) = (CE0 | CLE | 0xa2); (*P_NAND_CMD) = (CE0 | IDLE); } NFIO_LINE // send cmds (*P_NAND_CMD) = CE0 | IDLE; (*P_NAND_CMD) = CE0 | CLE | 0; (*P_NAND_CMD) = CE0 | ALE | 0; if ( glb_setup.cfg.b.large_page ) { NFIO_LINE (*P_NAND_CMD) = CE0 | ALE | 0; } (*P_NAND_CMD) = CE0 | ALE | ((src)&0xff); (*P_NAND_CMD) = CE0 | ALE | ((src>>8)&0xff); (*P_NAND_CMD) = CE0 | ALE | 0; if ( glb_setup.cfg.b.large_page ) { NFIO_LINE (*P_NAND_CMD) = CE0 | CLE | 0x30; } NFIO_LINE if ( glb_setup.cfg.b.no_rb ) { // without RB NFIO_LINE (*P_NAND_CMD) = CE0 | IDLE; (*P_NAND_CMD) = CE0 | CLE | 0x70; (*P_NAND_CMD) = CE0 | IDLE | 2; (*P_NAND_CMD) = IO6 | RB | 13; (*P_NAND_CMD) = CE0 | IDLE | 2; (*P_NAND_CMD) = CE0 | CLE | 0; //switch to read mode. (*P_NAND_CMD) = CE0 | IDLE | 2; }else{ // with RB (*P_NAND_CMD) = CE0 | IDLE | 40; (*P_NAND_CMD) = CE0 | RB | 13; } /* new way to set address. */ (*P_NAND_CMD) = ADL | (mem & 0xFFFF); //data address. (*P_NAND_CMD) = ADH | ((mem >> 16) & 0xFFFF); (*P_NAND_CMD) = AIL | (info_adr & 0xFFFF); //set info address. (*P_NAND_CMD) = AIH | ((info_adr >> 16) & 0xFFFF); /* set seed, start dma*/ (*P_NAND_CMD) = SEED | (0xc2 + (src&0x7fff)); //printf("cmd 0x%x\n", glb_setup.cfg.b.cmd); //printf("P_NAND_CFG 0x%x\n", (*P_NAND_CFG)); (*P_NAND_CMD) = glb_setup.cfg.b.cmd; (*P_NAND_CMD) = (CE0 | IDLE); (*P_NAND_CMD) = (CE0 | IDLE); NFIO_LINE /* wait I/F ready*/ while (((*P_NAND_CMD)>>22&0x1f) > 0); NFIO_LINE /* wait info dma ready */ do { inv_dcache_range((uint64_t)p_info_buf, (uint64_t)(ecc_pages * sizeof(uint64_t))); dma_done = p_info_buf[ecc_pages-1]; } while (dma_done == 0); NFIO_LINE // random only, old oob! // blank page: ecc uncorr, zero_cnt<10. // ecc error: ecc uncorr, zero_cnt>10. // no magic: ecc OK, no magic word. // return the first error. for (k=0; k>24 & 0x3f) == 0x3f) { // uncorrectable if ( glb_setup.cfg.b.a2 ) nfio_reset(); // check blank page if ((info>>16&0x3f) < 0xa) { //PRINT("blank @ page 0x%08x\n", src); return ERROR_NAND_BLANK_PAGE; } else { //PRINT("ecc fail @ page 0x%08x\n", src); return ERROR_NAND_ECC; } } if (k == 0 && (info & 0xc000ffff) != 0xc000aa55) { //magic word error //PRINT("magic fail @ page 0x%08x\n", src); return ERROR_NAND_MAGIC_WORD; } info_adr += 8; } NFIO_LINE return 0; } static uint32_t page_2_addr(uint32_t page) { uint32_t addr = page; uint32_t new_type = glb_ext_info.new_type; uint32_t page_per_blk = glb_ext_info.page_per_blk; if (new_type) { uint32_t blk_addr; blk_addr = (page / page_per_blk) * page_per_blk; /* hynix */ if (new_type < 10) { if (new_type == 6) addr = page_list_hynix_1y[page % page_per_blk] + blk_addr; else addr = page_list_hynix_2x[page % page_per_blk] + blk_addr; } else if (new_type == 40) { addr = (page % page_per_blk) * 2 + blk_addr; } } return addr; } // read multiple nand pages. fixme, may cause overflow... uint32_t nfio_read(uint32_t src, uint32_t mem, uint32_t size) { uint32_t ret; uint32_t ecc_mode, short_mode, short_size, ecc_pages, page_size; uint32_t page_base, page_addr, retry_cnt, read_size; // ecc page size, unit: 8 bytes ecc_mode = glb_setup.cfg.b.cmd>>14&7; short_mode = glb_setup.cfg.b.cmd>>13&1; short_size = glb_setup.cfg.b.cmd>>6&0x7f; ecc_pages = glb_setup.cfg.b.cmd&0x3f; page_size = (short_mode ? short_size : ecc_mode < 2 ? 64 : 128) * 8 * ecc_pages; NFIO_LINE flush_dcache_range((uint64_t)mem, (uint64_t)(size)); // read one nand page per loop. for (read_size=0; read_sizenand_setup; p_ext_info = &page0->ext_info; efuse_read(0, 8, e_cfg); // from default glb_setup.cfg.d32 = DEFAULT_ECC_MODE; glb_setup.cfg.b.active = 1; // from efuse glb_setup.cfg.b.no_rb = 1; //defaut //glb_setup.cfg.b.sync_mode = efuse->tg_nd_bm_e ? 2 : 0; glb_setup.cfg.b.sync_mode = 0; //fixme, glb_setup.cfg.b.size = 0; NFIO_LINE // get pin nfio_pin_mux(); // set clk to 24MHz (*P_CLK_CNTL) = ( 1<< 31 | 1<<28 | 1 << 21 | 2 << 8 | 1); // nand cfg register: // sync[11:10] : 0:aync, 1:micron(started from sync, don't need to set), // 2: samsung/toshiba toggle, need to set when read. // Nand cycle = 200ns, timing at 3rd clock. (*P_NAND_CFG) = 4 | (3<<5) // Please see main.c for detailed timing info |(glb_setup.cfg.b.sync_mode<<10) // async mode |(0<<12) // disable cmd_start |(0<<13) // disable cmd_auto |(0<<14) // disable apb_mode |(1<<31);// disable NAND bus gated clock. if (e_cfg[6] & (1 << 5)) (*P_NAND_CFG) = (*P_NAND_CFG) |(1<<17); // enable encrypt mode. // reset ret = nfio_reset(); if (ret) return ret; NFIO_LINE //read ID glb_setup.id = _read_id(); //printf("MID, %x\n", glb_setup.id); // set retry parameter. _set_retry(glb_setup.id); NFIO_LINE //_dump_mem_u8((uint8_t *)page0, 384); /* fixme, use the memory filled by romboot nfdrv.*/ ret = nfio_read(0, NAND_PAGE0_BUF, 384); if (ret == ERROR_NAND_ECC) { if (glb_setup.id == NAND_MFR_SANDISK) { glb_setup.cfg.b.a2 = 1; glb_setup.max = 0; ret = nfio_read(0, NAND_PAGE0_BUF, 384); } else if (glb_setup.cfg.b.sync_mode == 0 && (glb_setup.id == NAND_MFR_TOSHIBA || glb_setup.id == NAND_MFR_SAMSUNG)) { glb_setup.cfg.b.sync_mode = 2; (*P_NAND_CFG) |= (glb_setup.cfg.b.sync_mode<<10); *P_PAD_PULL_UP_REG2 &= ~(1<<15); ret = nfio_read(0, NAND_PAGE0_BUF, 384); } } // override glb_setup.cfg.d32 = nand_setup->cfg.d32; //get cfg! glb_setup.id = nand_setup->id; glb_setup.max = nand_setup->max; glb_setup.cfg.b.size = 0; // efuse size glb_ext_info.new_type = p_ext_info->new_type; glb_ext_info.page_per_blk = p_ext_info->page_per_blk; //printf("cfg %x, new %x, pages %x\n", glb_setup.cfg.d32, glb_ext_info.new_type, glb_ext_info.page_per_blk); NFIO_LINE return ret; } /* *interface for spl. * * src, offset bytes in storage * dst, ram address * size, reada bytes count. **/ uint32_t nf_read(uint32_t boot_device, uint32_t src, uint32_t des, uint32_t size) { uint32_t _page_size, _page, _cnt; uint32_t ecc_mode, ecc_pages; uint32_t ret = 0; ecc_mode = glb_setup.cfg.b.cmd>>14&7; ecc_pages = glb_setup.cfg.b.cmd&0x3f; _page_size = (ecc_mode < 2 ? 64 : 128) * 8 * ecc_pages; //printf("ecc_mode %d, ecc_pages %d, pagesize %d\n", ecc_mode, ecc_pages, _page_size); if (src % SRC_ALIGN_SIZE) { //PRINT("%s(), unaligned src 0x%08x\n", __func__, src); ret = ERROR_NAND_UNALIGN_SRC; goto _out; } NFIO_LINE _page = src / _page_size; _cnt = size; ret = nfio_read(_page + 1, des, _cnt); /*skip page0 */ // des64 = (uint64_t) des; // _dump_mem_u8((uint8_t *)des64, size); _out: return ret; }