/* * Copyright (c) 2020, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include "fpga_private.h" #include #include static entry_point_info_t bl33_image_ep_info; static unsigned int system_freq; volatile uint32_t secondary_core_spinlock; uintptr_t plat_get_ns_image_entrypoint(void) { #ifdef PRELOADED_BL33_BASE return PRELOADED_BL33_BASE; #else return 0ULL; #endif } uint32_t fpga_get_spsr_for_bl33_entry(void) { return SPSR_64(MODE_EL2, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS); } void bl31_early_platform_setup2(u_register_t arg0, u_register_t arg1, u_register_t arg2, u_register_t arg3) { /* Add this core to the VALID mpids list */ fpga_valid_mpids[plat_my_core_pos()] = VALID_MPID; /* * Notify the secondary CPUs that the C runtime is ready * so they can announce themselves. */ secondary_core_spinlock = C_RUNTIME_READY_KEY; dsbish(); sev(); fpga_console_init(); bl33_image_ep_info.pc = plat_get_ns_image_entrypoint(); bl33_image_ep_info.spsr = fpga_get_spsr_for_bl33_entry(); SET_SECURITY_STATE(bl33_image_ep_info.h.attr, NON_SECURE); /* Set x0-x3 for the primary CPU as expected by the kernel */ bl33_image_ep_info.args.arg0 = (u_register_t)FPGA_PRELOADED_DTB_BASE; bl33_image_ep_info.args.arg1 = 0U; bl33_image_ep_info.args.arg2 = 0U; bl33_image_ep_info.args.arg3 = 0U; } void bl31_plat_arch_setup(void) { } void bl31_platform_setup(void) { /* Write frequency to CNTCRL and initialize timer */ generic_delay_timer_init(); /* * Before doing anything else, wait for some time to ensure that * the secondary CPUs have populated the fpga_valid_mpids array. * As the number of secondary cores is unknown and can even be 0, * it is not possible to rely on any signal from them, so use a * delay instead. */ mdelay(5); /* * On the event of a cold reset issued by, for instance, a reset pin * assertion, we cannot guarantee memory to be initialized to zero. * In such scenario, if the secondary cores reached * plat_secondary_cold_boot_setup before the primary one initialized * .BSS, we could end up having a race condition if the spinlock * was not cleared before. * * Similarly, if there were a reset before the spinlock had been * cleared, the secondary cores would find the lock opened before * .BSS is cleared, causing another race condition. * * So clean the spinlock as soon as we think it is safe to reduce the * chances of any race condition on a reset. */ secondary_core_spinlock = 0UL; /* Initialize the GIC driver, cpu and distributor interfaces */ plat_fpga_gic_init(); } entry_point_info_t *bl31_plat_get_next_image_ep_info(uint32_t type) { entry_point_info_t *next_image_info; next_image_info = &bl33_image_ep_info; /* Only expecting BL33: the kernel will run in EL2NS */ assert(type == NON_SECURE); /* None of the images can have 0x0 as the entrypoint */ if (next_image_info->pc) { return next_image_info; } else { return NULL; } } /* * Even though we sell the FPGA UART as an SBSA variant, it is actually * a full fledged PL011. So the baudrate divider registers exist. */ #ifndef UARTIBRD #define UARTIBRD 0x024 #define UARTFBRD 0x028 #endif /* Round an integer to the closest multiple of a value. */ static unsigned int round_multiple(unsigned int x, unsigned int multiple) { if (multiple < 2) { return x; } return ((x + (multiple / 2 - 1)) / multiple) * multiple; } #define PL011_FRAC_SHIFT 6 #define FPGA_DEFAULT_BAUDRATE 38400 #define PL011_OVERSAMPLING 16 static unsigned int pl011_freq_from_divider(unsigned int divider) { unsigned int freq; freq = divider * FPGA_DEFAULT_BAUDRATE * PL011_OVERSAMPLING; return freq >> PL011_FRAC_SHIFT; } /* * The FPGAs run most peripherals from one main clock, among them the CPUs, * the arch timer, and the UART baud base clock. * The SCP knows this frequency and programs the UART clock divider for a * 38400 bps baudrate. Recalculate the base input clock from there. */ static unsigned int fpga_get_system_frequency(void) { const void *fdt = (void *)(uintptr_t)FPGA_PRELOADED_DTB_BASE; int node, err; /* * If the arch timer DT node has an explicit clock-frequency property * set, use that, to allow people overriding auto-detection. */ node = fdt_node_offset_by_compatible(fdt, 0, "arm,armv8-timer"); if (node >= 0) { uint32_t freq; err = fdt_read_uint32(fdt, node, "clock-frequency", &freq); if (err >= 0) { return freq; } } node = fdt_node_offset_by_compatible(fdt, 0, "arm,pl011"); if (node >= 0) { uintptr_t pl011_base; unsigned int divider; err = fdt_get_reg_props_by_index(fdt, node, 0, &pl011_base, NULL); if (err >= 0) { divider = mmio_read_32(pl011_base + UARTIBRD); divider <<= PL011_FRAC_SHIFT; divider += mmio_read_32(pl011_base + UARTFBRD); /* * The result won't be exact, due to rounding errors, * but the input frequency was a multiple of 250 KHz. */ return round_multiple(pl011_freq_from_divider(divider), 250000); } else { WARN("Cannot read PL011 MMIO base\n"); } } else { WARN("No PL011 DT node\n"); } /* No PL011 DT node or calculation failed. */ return FPGA_DEFAULT_TIMER_FREQUENCY; } unsigned int plat_get_syscnt_freq2(void) { if (system_freq == 0U) { system_freq = fpga_get_system_frequency(); } return system_freq; } static void fpga_dtb_update_clock(void *fdt, unsigned int freq) { uint32_t freq_dtb = fdt32_to_cpu(freq); uint32_t phandle; int node, err; node = fdt_node_offset_by_compatible(fdt, 0, "arm,pl011"); if (node < 0) { WARN("%s(): No PL011 DT node found\n", __func__); return; } err = fdt_read_uint32(fdt, node, "clocks", &phandle); if (err != 0) { WARN("Cannot find clocks property\n"); return; } node = fdt_node_offset_by_phandle(fdt, phandle); if (node < 0) { WARN("Cannot get phandle\n"); return; } err = fdt_setprop_inplace(fdt, node, "clock-frequency", &freq_dtb, sizeof(freq_dtb)); if (err < 0) { WARN("Could not update DT baud clock frequency\n"); return; } } #define CMDLINE_SIGNATURE "CMD:" static int fpga_dtb_set_commandline(void *fdt, const char *cmdline) { int chosen; const char *eol; char nul = 0; int slen, err; chosen = fdt_add_subnode(fdt, 0, "chosen"); if (chosen == -FDT_ERR_EXISTS) { chosen = fdt_path_offset(fdt, "/chosen"); } if (chosen < 0) { return chosen; } /* * There is most likely an EOL at the end of the * command line, make sure we terminate the line there. * We can't replace the EOL with a NUL byte in the * source, as this is in read-only memory. So we first * create the property without any termination, then * append a single NUL byte. */ eol = strchr(cmdline, '\n'); if (eol == NULL) { eol = strchr(cmdline, 0); } /* Skip the signature and omit the EOL/NUL byte. */ slen = eol - (cmdline + strlen(CMDLINE_SIGNATURE)); /* * Let's limit the size of the property, just in case * we find the signature by accident. The Linux kernel * limits to 4096 characters at most (in fact 2048 for * arm64), so that sounds like a reasonable number. */ if (slen > 4095) { slen = 4095; } err = fdt_setprop(fdt, chosen, "bootargs", cmdline + strlen(CMDLINE_SIGNATURE), slen); if (err != 0) { return err; } return fdt_appendprop(fdt, chosen, "bootargs", &nul, 1); } static void fpga_prepare_dtb(void) { void *fdt = (void *)(uintptr_t)FPGA_PRELOADED_DTB_BASE; const char *cmdline = (void *)(uintptr_t)FPGA_PRELOADED_CMD_LINE; int err; err = fdt_open_into(fdt, fdt, FPGA_MAX_DTB_SIZE); if (err < 0) { ERROR("cannot open devicetree at %p: %d\n", fdt, err); panic(); } /* Reserve memory used by Trusted Firmware. */ if (fdt_add_reserved_memory(fdt, "tf-a@80000000", BL31_BASE, BL31_LIMIT - BL31_BASE)) { WARN("Failed to add reserved memory node to DT\n"); } /* Check for the command line signature. */ if (!strncmp(cmdline, CMDLINE_SIGNATURE, strlen(CMDLINE_SIGNATURE))) { err = fpga_dtb_set_commandline(fdt, cmdline); if (err == 0) { INFO("using command line at 0x%x\n", FPGA_PRELOADED_CMD_LINE); } else { ERROR("failed to put command line into DTB: %d\n", err); } } if (err < 0) { ERROR("Error %d extending Device Tree\n", err); panic(); } err = fdt_add_cpus_node(fdt, FPGA_MAX_PE_PER_CPU, FPGA_MAX_CPUS_PER_CLUSTER, FPGA_MAX_CLUSTER_COUNT); if (err == -EEXIST) { WARN("Not overwriting already existing /cpus node in DTB\n"); } else { if (err < 0) { ERROR("Error %d creating the /cpus DT node\n", err); panic(); } else { unsigned int nr_cores = fpga_get_nr_gic_cores(); INFO("Adjusting GICR DT region to cover %u cores\n", nr_cores); err = fdt_adjust_gic_redist(fdt, nr_cores, fpga_get_redist_base(), fpga_get_redist_size()); if (err < 0) { ERROR("Error %d fixing up GIC DT node\n", err); } } } fpga_dtb_update_clock(fdt, system_freq); /* Check whether we support the SPE PMU. Remove the DT node if not. */ if (!is_feat_spe_supported()) { int node = fdt_node_offset_by_compatible(fdt, 0, "arm,statistical-profiling-extension-v1"); if (node >= 0) { fdt_del_node(fdt, node); } } /* Check whether we have an ITS. Remove the DT node if not. */ if (!fpga_has_its()) { int node = fdt_node_offset_by_compatible(fdt, 0, "arm,gic-v3-its"); if (node >= 0) { fdt_del_node(fdt, node); } } err = fdt_pack(fdt); if (err < 0) { ERROR("Failed to pack Device Tree at %p: error %d\n", fdt, err); } clean_dcache_range((uintptr_t)fdt, fdt_blob_size(fdt)); } void bl31_plat_runtime_setup(void) { fpga_prepare_dtb(); } void bl31_plat_enable_mmu(uint32_t flags) { /* TODO: determine if MMU needs to be enabled */ }