// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2022 ATMEL * Copyright 2017 Free Electrons * * Author: Boris Brezillon * * Derived from the atmel_nand.c driver which contained the following * copyrights: * * Copyright 2003 Rick Bronson * * Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8) * Copyright 2001 Thomas Gleixner (gleixner@autronix.de) * * Derived from drivers/mtd/spia.c (removed in v3.8) * Copyright 2000 Steven J. Hill (sjhill@cotw.com) * * * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263 * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007 * * Derived from Das U-Boot source code * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c) * Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas * * Add Programmable Multibit ECC support for various AT91 SoC * Copyright 2012 ATMEL, Hong Xu * * Add Nand Flash Controller support for SAMA5 SoC * Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com) * * Port from Linux * Balamanikandan Gunasundar(balamanikandan.gunasundar@microchip.com) * Copyright (C) 2022 Microchip Technology Inc. * * A few words about the naming convention in this file. This convention * applies to structure and function names. * * Prefixes: * * - atmel_nand_: all generic structures/functions * - atmel_smc_nand_: all structures/functions specific to the SMC interface * (at91sam9 and avr32 SoCs) * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface * (sama5 SoCs and later) * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block * that is available in the HSMC block * - _nand_: all SoC specific structures/functions */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "pmecc.h" #define NSEC_PER_SEC 1000000000L #define ATMEL_HSMC_NFC_CFG 0x0 #define ATMEL_HSMC_NFC_CFG_SPARESIZE(x) (((x) / 4) << 24) #define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK GENMASK(30, 24) #define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul) (((cyc) << 16) | ((mul) << 20)) #define ATMEL_HSMC_NFC_CFG_DTO_MAX GENMASK(22, 16) #define ATMEL_HSMC_NFC_CFG_RBEDGE BIT(13) #define ATMEL_HSMC_NFC_CFG_FALLING_EDGE BIT(12) #define ATMEL_HSMC_NFC_CFG_RSPARE BIT(9) #define ATMEL_HSMC_NFC_CFG_WSPARE BIT(8) #define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK GENMASK(2, 0) #define ATMEL_HSMC_NFC_CFG_PAGESIZE(x) (fls((x) / 512) - 1) #define ATMEL_HSMC_NFC_CTRL 0x4 #define ATMEL_HSMC_NFC_CTRL_EN BIT(0) #define ATMEL_HSMC_NFC_CTRL_DIS BIT(1) #define ATMEL_HSMC_NFC_SR 0x8 #define ATMEL_HSMC_NFC_IER 0xc #define ATMEL_HSMC_NFC_IDR 0x10 #define ATMEL_HSMC_NFC_IMR 0x14 #define ATMEL_HSMC_NFC_SR_ENABLED BIT(1) #define ATMEL_HSMC_NFC_SR_RB_RISE BIT(4) #define ATMEL_HSMC_NFC_SR_RB_FALL BIT(5) #define ATMEL_HSMC_NFC_SR_BUSY BIT(8) #define ATMEL_HSMC_NFC_SR_WR BIT(11) #define ATMEL_HSMC_NFC_SR_CSID GENMASK(14, 12) #define ATMEL_HSMC_NFC_SR_XFRDONE BIT(16) #define ATMEL_HSMC_NFC_SR_CMDDONE BIT(17) #define ATMEL_HSMC_NFC_SR_DTOE BIT(20) #define ATMEL_HSMC_NFC_SR_UNDEF BIT(21) #define ATMEL_HSMC_NFC_SR_AWB BIT(22) #define ATMEL_HSMC_NFC_SR_NFCASE BIT(23) #define ATMEL_HSMC_NFC_SR_ERRORS (ATMEL_HSMC_NFC_SR_DTOE | \ ATMEL_HSMC_NFC_SR_UNDEF | \ ATMEL_HSMC_NFC_SR_AWB | \ ATMEL_HSMC_NFC_SR_NFCASE) #define ATMEL_HSMC_NFC_SR_RBEDGE(x) BIT((x) + 24) #define ATMEL_HSMC_NFC_ADDR 0x18 #define ATMEL_HSMC_NFC_BANK 0x1c #define ATMEL_NFC_MAX_RB_ID 7 #define ATMEL_NFC_SRAM_SIZE 0x2400 #define ATMEL_NFC_CMD(pos, cmd) ((cmd) << (((pos) * 8) + 2)) #define ATMEL_NFC_VCMD2 BIT(18) #define ATMEL_NFC_ACYCLE(naddrs) ((naddrs) << 19) #define ATMEL_NFC_CSID(cs) ((cs) << 22) #define ATMEL_NFC_DATAEN BIT(25) #define ATMEL_NFC_NFCWR BIT(26) #define ATMEL_NFC_MAX_ADDR_CYCLES 5 #define ATMEL_NAND_ALE_OFFSET BIT(21) #define ATMEL_NAND_CLE_OFFSET BIT(22) #define DEFAULT_TIMEOUT_MS 1000 #define MIN_DMA_LEN 128 static struct nand_ecclayout atmel_pmecc_oobinfo; struct nand_controller_ops { int (*attach_chip)(struct nand_chip *chip); int (*setup_data_interface)(struct mtd_info *mtd, int chipnr, const struct nand_data_interface *conf); }; struct nand_controller { const struct nand_controller_ops *ops; }; enum atmel_nand_rb_type { ATMEL_NAND_NO_RB, ATMEL_NAND_NATIVE_RB, ATMEL_NAND_GPIO_RB, }; struct atmel_nand_rb { enum atmel_nand_rb_type type; union { struct gpio_desc gpio; int id; }; }; struct atmel_nand_cs { int id; struct atmel_nand_rb rb; struct gpio_desc csgpio; struct { void __iomem *virt; dma_addr_t dma; } io; struct atmel_smc_cs_conf smcconf; }; struct atmel_nand { struct list_head node; struct udevice *dev; struct nand_chip base; struct atmel_nand_cs *activecs; struct atmel_pmecc_user *pmecc; struct gpio_desc cdgpio; int numcs; struct nand_controller *controller; struct atmel_nand_cs cs[]; }; static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip) { return container_of(chip, struct atmel_nand, base); } enum atmel_nfc_data_xfer { ATMEL_NFC_NO_DATA, ATMEL_NFC_READ_DATA, ATMEL_NFC_WRITE_DATA, }; struct atmel_nfc_op { u8 cs; u8 ncmds; u8 cmds[2]; u8 naddrs; u8 addrs[5]; enum atmel_nfc_data_xfer data; u32 wait; u32 errors; }; struct atmel_nand_controller; struct atmel_nand_controller_caps; struct atmel_nand_controller_ops { int (*probe)(struct udevice *udev, const struct atmel_nand_controller_caps *caps); int (*remove)(struct atmel_nand_controller *nc); void (*nand_init)(struct atmel_nand_controller *nc, struct atmel_nand *nand); int (*ecc_init)(struct nand_chip *chip); int (*setup_data_interface)(struct atmel_nand *nand, int csline, const struct nand_data_interface *conf); }; struct atmel_nand_controller_caps { bool has_dma; bool legacy_of_bindings; u32 ale_offs; u32 cle_offs; const char *ebi_csa_regmap_name; const struct atmel_nand_controller_ops *ops; }; struct atmel_nand_controller { struct nand_controller base; const struct atmel_nand_controller_caps *caps; struct udevice *dev; struct regmap *smc; struct dma_chan *dmac; struct atmel_pmecc *pmecc; struct list_head chips; struct clk *mck; }; static inline struct atmel_nand_controller * to_nand_controller(struct nand_controller *ctl) { return container_of(ctl, struct atmel_nand_controller, base); } struct atmel_smc_nand_ebi_csa_cfg { u32 offs; u32 nfd0_on_d16; }; struct atmel_smc_nand_controller { struct atmel_nand_controller base; struct regmap *ebi_csa_regmap; struct atmel_smc_nand_ebi_csa_cfg *ebi_csa; }; static inline struct atmel_smc_nand_controller * to_smc_nand_controller(struct nand_controller *ctl) { return container_of(to_nand_controller(ctl), struct atmel_smc_nand_controller, base); } struct atmel_hsmc_nand_controller { struct atmel_nand_controller base; struct { struct gen_pool *pool; void __iomem *virt; dma_addr_t dma; } sram; const struct atmel_hsmc_reg_layout *hsmc_layout; struct regmap *io; struct atmel_nfc_op op; struct completion complete; int irq; /* Only used when instantiating from legacy DT bindings. */ struct clk *clk; }; static inline struct atmel_hsmc_nand_controller * to_hsmc_nand_controller(struct nand_controller *ctl) { return container_of(to_nand_controller(ctl), struct atmel_hsmc_nand_controller, base); } static void pmecc_config_ecc_layout(struct nand_ecclayout *layout, int oobsize, int ecc_len) { int i; layout->eccbytes = ecc_len; /* ECC will occupy the last ecc_len bytes continuously */ for (i = 0; i < ecc_len; i++) layout->eccpos[i] = oobsize - ecc_len + i; layout->oobfree[0].offset = 2; layout->oobfree[0].length = oobsize - ecc_len - layout->oobfree[0].offset; } static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status) { op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS; op->wait ^= status & op->wait; return !op->wait || op->errors; } static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll, unsigned int timeout_ms) { int ret; u32 status; if (!timeout_ms) timeout_ms = DEFAULT_TIMEOUT_MS; if (poll) ret = regmap_read_poll_timeout(nc->base.smc, ATMEL_HSMC_NFC_SR, status, atmel_nfc_op_done(&nc->op, status), 0, timeout_ms); else return -EOPNOTSUPP; if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) { dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n"); ret = -ETIMEDOUT; } if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) { dev_err(nc->base.dev, "Access to an undefined area\n"); ret = -EIO; } if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) { dev_err(nc->base.dev, "Access while busy\n"); ret = -EIO; } if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) { dev_err(nc->base.dev, "Wrong access size\n"); ret = -EIO; } return ret; } static void iowrite8_rep(void *addr, const uint8_t *buf, int len) { int i; for (i = 0; i < len; i++) writeb(buf[i], addr); } static void ioread8_rep(void *addr, uint8_t *buf, int len) { int i; for (i = 0; i < len; i++) buf[i] = readb(addr); } static void ioread16_rep(void *addr, void *buf, int len) { int i; u16 *p = (u16 *)buf; for (i = 0; i < len; i++) p[i] = readw(addr); } static void iowrite16_rep(void *addr, const void *buf, int len) { int i; u16 *p = (u16 *)buf; for (i = 0; i < len; i++) writew(p[i], addr); } static u8 atmel_nand_read_byte(struct mtd_info *mtd) { struct nand_chip *chip = mtd_to_nand(mtd); struct atmel_nand *nand = to_atmel_nand(chip); return ioread8(nand->activecs->io.virt); } static void atmel_nand_write_byte(struct mtd_info *mtd, u8 byte) { struct nand_chip *chip = mtd_to_nand(mtd); struct atmel_nand *nand = to_atmel_nand(chip); if (chip->options & NAND_BUSWIDTH_16) iowrite16(byte | (byte << 8), nand->activecs->io.virt); else iowrite8(byte, nand->activecs->io.virt); } static void atmel_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len) { struct nand_chip *chip = mtd_to_nand(mtd); struct atmel_nand *nand = to_atmel_nand(chip); if (chip->options & NAND_BUSWIDTH_16) ioread16_rep(nand->activecs->io.virt, buf, len / 2); else ioread8_rep(nand->activecs->io.virt, buf, len); } static void atmel_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len) { struct nand_chip *chip = mtd_to_nand(mtd); struct atmel_nand *nand = to_atmel_nand(chip); if (chip->options & NAND_BUSWIDTH_16) iowrite16_rep(nand->activecs->io.virt, buf, len / 2); else iowrite8_rep(nand->activecs->io.virt, buf, len); } static int atmel_nand_dev_ready(struct mtd_info *mtd) { struct nand_chip *chip = mtd_to_nand(mtd); struct atmel_nand *nand = to_atmel_nand(chip); return dm_gpio_get_value(&nand->activecs->rb.gpio); } static void atmel_nand_select_chip(struct mtd_info *mtd, int cs) { struct nand_chip *chip = mtd_to_nand(mtd); struct atmel_nand *nand = to_atmel_nand(chip); if (cs < 0 || cs >= nand->numcs) { nand->activecs = NULL; chip->dev_ready = NULL; return; } nand->activecs = &nand->cs[cs]; if (nand->activecs->rb.type == ATMEL_NAND_GPIO_RB) chip->dev_ready = atmel_nand_dev_ready; } static int atmel_hsmc_nand_dev_ready(struct mtd_info *mtd) { struct nand_chip *chip = mtd_to_nand(mtd); struct atmel_nand *nand = to_atmel_nand(chip); struct atmel_hsmc_nand_controller *nc; u32 status; nc = to_hsmc_nand_controller(nand->controller); regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &status); return status & ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id); } static void atmel_hsmc_nand_select_chip(struct mtd_info *mtd, int cs) { struct nand_chip *chip = mtd_to_nand(mtd); struct atmel_nand *nand = to_atmel_nand(chip); struct atmel_hsmc_nand_controller *nc; nc = to_hsmc_nand_controller(nand->controller); atmel_nand_select_chip(mtd, cs); if (!nand->activecs) { regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL, ATMEL_HSMC_NFC_CTRL_DIS); return; } if (nand->activecs->rb.type == ATMEL_NAND_NATIVE_RB) chip->dev_ready = atmel_hsmc_nand_dev_ready; regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG, ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK | ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK | ATMEL_HSMC_NFC_CFG_RSPARE | ATMEL_HSMC_NFC_CFG_WSPARE, ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) | ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) | ATMEL_HSMC_NFC_CFG_RSPARE); regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL, ATMEL_HSMC_NFC_CTRL_EN); } static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll) { u8 *addrs = nc->op.addrs; unsigned int op = 0; u32 addr, val; int i, ret; nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE; for (i = 0; i < nc->op.ncmds; i++) op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]); if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES) regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++); op |= ATMEL_NFC_CSID(nc->op.cs) | ATMEL_NFC_ACYCLE(nc->op.naddrs); if (nc->op.ncmds > 1) op |= ATMEL_NFC_VCMD2; addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) | (addrs[3] << 24); if (nc->op.data != ATMEL_NFC_NO_DATA) { op |= ATMEL_NFC_DATAEN; nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE; if (nc->op.data == ATMEL_NFC_WRITE_DATA) op |= ATMEL_NFC_NFCWR; } /* Clear all flags. */ regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val); /* Send the command. */ regmap_write(nc->io, op, addr); ret = atmel_nfc_wait(nc, poll, 0); if (ret) dev_err(nc->base.dev, "Failed to send NAND command (err = %d)!", ret); /* Reset the op state. */ memset(&nc->op, 0, sizeof(nc->op)); return ret; } static void atmel_hsmc_nand_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl) { struct nand_chip *chip = mtd_to_nand(mtd); struct atmel_nand *nand = to_atmel_nand(chip); struct atmel_hsmc_nand_controller *nc; nc = to_hsmc_nand_controller(nand->controller); if (ctrl & NAND_ALE) { if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES) return; nc->op.addrs[nc->op.naddrs++] = dat; } else if (ctrl & NAND_CLE) { if (nc->op.ncmds > 1) return; nc->op.cmds[nc->op.ncmds++] = dat; } if (dat == NAND_CMD_NONE) { nc->op.cs = nand->activecs->id; atmel_nfc_exec_op(nc, true); } } static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) { struct nand_chip *chip = mtd_to_nand(mtd); struct atmel_nand *nand = to_atmel_nand(chip); struct atmel_nand_controller *nc; nc = to_nand_controller(nand->controller); if ((ctrl & NAND_CTRL_CHANGE) && dm_gpio_is_valid(&nand->activecs->csgpio)) { if (ctrl & NAND_NCE) dm_gpio_set_value(&nand->activecs->csgpio, 0); else dm_gpio_set_value(&nand->activecs->csgpio, 1); } if (ctrl & NAND_ALE) writeb(cmd, nand->activecs->io.virt + nc->caps->ale_offs); else if (ctrl & NAND_CLE) writeb(cmd, nand->activecs->io.virt + nc->caps->cle_offs); } static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf, bool oob_required) { struct mtd_info *mtd = nand_to_mtd(chip); struct atmel_nand *nand = to_atmel_nand(chip); struct atmel_hsmc_nand_controller *nc; int ret = -EIO; nc = to_hsmc_nand_controller(nand->controller); if (ret) memcpy_toio(nc->sram.virt, buf, mtd->writesize); if (oob_required) memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi, mtd->oobsize); } static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf, bool oob_required) { struct mtd_info *mtd = nand_to_mtd(chip); struct atmel_nand *nand = to_atmel_nand(chip); struct atmel_hsmc_nand_controller *nc; int ret = -EIO; nc = to_hsmc_nand_controller(nand->controller); if (ret) memcpy_fromio(buf, nc->sram.virt, mtd->writesize); if (oob_required) memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize, mtd->oobsize); } static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column) { struct mtd_info *mtd = nand_to_mtd(chip); struct atmel_nand *nand = to_atmel_nand(chip); struct atmel_hsmc_nand_controller *nc; nc = to_hsmc_nand_controller(nand->controller); if (column >= 0) { nc->op.addrs[nc->op.naddrs++] = column; /* * 2 address cycles for the column offset on large page NANDs. */ if (mtd->writesize > 512) nc->op.addrs[nc->op.naddrs++] = column >> 8; } if (page >= 0) { nc->op.addrs[nc->op.naddrs++] = page; nc->op.addrs[nc->op.naddrs++] = page >> 8; if (chip->options & NAND_ROW_ADDR_3) nc->op.addrs[nc->op.naddrs++] = page >> 16; } } static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw) { struct atmel_nand *nand = to_atmel_nand(chip); struct atmel_nand_controller *nc; int ret; nc = to_nand_controller(nand->controller); if (raw) return 0; ret = atmel_pmecc_enable(nand->pmecc, op); if (ret) dev_err(nc->dev, "Failed to enable ECC engine (err = %d)\n", ret); return ret; } static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw) { struct atmel_nand *nand = to_atmel_nand(chip); if (!raw) atmel_pmecc_disable(nand->pmecc); } static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw) { struct atmel_nand *nand = to_atmel_nand(chip); struct mtd_info *mtd = nand_to_mtd(chip); struct atmel_nand_controller *nc; struct mtd_oob_region oobregion; void *eccbuf; int ret, i; nc = to_nand_controller(nand->controller); if (raw) return 0; ret = atmel_pmecc_wait_rdy(nand->pmecc); if (ret) { dev_err(nc->dev, "Failed to transfer NAND page data (err = %d)\n", ret); return ret; } mtd_ooblayout_ecc(mtd, 0, &oobregion); eccbuf = chip->oob_poi + oobregion.offset; for (i = 0; i < chip->ecc.steps; i++) { atmel_pmecc_get_generated_eccbytes(nand->pmecc, i, eccbuf); eccbuf += chip->ecc.bytes; } return 0; } static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf, bool raw) { struct atmel_nand *nand = to_atmel_nand(chip); struct mtd_info *mtd = nand_to_mtd(chip); struct atmel_nand_controller *nc; struct mtd_oob_region oobregion; int ret, i, max_bitflips = 0; void *databuf, *eccbuf; nc = to_nand_controller(nand->controller); if (raw) return 0; ret = atmel_pmecc_wait_rdy(nand->pmecc); if (ret) { dev_err(nc->dev, "Failed to read NAND page data (err = %d)\n", ret); return ret; } mtd_ooblayout_ecc(mtd, 0, &oobregion); eccbuf = chip->oob_poi + oobregion.offset; databuf = buf; for (i = 0; i < chip->ecc.steps; i++) { ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf, eccbuf); if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc)) ret = nand_check_erased_ecc_chunk(databuf, chip->ecc.size, eccbuf, chip->ecc.bytes, NULL, 0, chip->ecc.strength); if (ret >= 0) max_bitflips = max(ret, max_bitflips); else mtd->ecc_stats.failed++; databuf += chip->ecc.size; eccbuf += chip->ecc.bytes; } return max_bitflips; } static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf, bool oob_required, int page, bool raw) { struct mtd_info *mtd = nand_to_mtd(chip); struct atmel_nand *nand = to_atmel_nand(chip); int ret; nand_prog_page_begin_op(chip, page, 0, NULL, 0); ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw); if (ret) return ret; atmel_nand_write_buf(mtd, buf, mtd->writesize); ret = atmel_nand_pmecc_generate_eccbytes(chip, raw); if (ret) { atmel_pmecc_disable(nand->pmecc); return ret; } atmel_nand_pmecc_disable(chip, raw); atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize); return nand_prog_page_end_op(chip); } static int atmel_nand_pmecc_write_page(struct mtd_info *mtd, struct nand_chip *chip, const u8 *buf, int oob_required, int page) { return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false); } static int atmel_nand_pmecc_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, const u8 *buf, int oob_required, int page) { return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true); } static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf, bool oob_required, int page, bool raw) { struct mtd_info *mtd = nand_to_mtd(chip); int ret; nand_read_page_op(chip, page, 0, NULL, 0); ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw); if (ret) return ret; atmel_nand_read_buf(mtd, buf, mtd->writesize); atmel_nand_read_buf(mtd, chip->oob_poi, mtd->oobsize); ret = atmel_nand_pmecc_correct_data(chip, buf, raw); atmel_nand_pmecc_disable(chip, raw); return ret; } static int atmel_nand_pmecc_read_page(struct mtd_info *mtd, struct nand_chip *chip, u8 *buf, int oob_required, int page) { return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false); } static int atmel_nand_pmecc_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, u8 *buf, int oob_required, int page) { return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true); } static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf, bool oob_required, int page, bool raw) { struct mtd_info *mtd = nand_to_mtd(chip); struct atmel_nand *nand = to_atmel_nand(chip); struct atmel_hsmc_nand_controller *nc; int ret, status; nc = to_hsmc_nand_controller(nand->controller); atmel_nfc_copy_to_sram(chip, buf, false); nc->op.cmds[0] = NAND_CMD_SEQIN; nc->op.ncmds = 1; atmel_nfc_set_op_addr(chip, page, 0x0); nc->op.cs = nand->activecs->id; nc->op.data = ATMEL_NFC_WRITE_DATA; ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw); if (ret) return ret; ret = atmel_nfc_exec_op(nc, true); if (ret) { atmel_nand_pmecc_disable(chip, raw); dev_err(nc->base.dev, "Failed to transfer NAND page data (err = %d)\n", ret); return ret; } ret = atmel_nand_pmecc_generate_eccbytes(chip, raw); atmel_nand_pmecc_disable(chip, raw); if (ret) return ret; atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize); nc->op.cmds[0] = NAND_CMD_PAGEPROG; nc->op.ncmds = 1; nc->op.cs = nand->activecs->id; ret = atmel_nfc_exec_op(nc, true); if (ret) dev_err(nc->base.dev, "Failed to program NAND page (err = %d)\n", ret); status = chip->waitfunc(mtd, chip); if (status & NAND_STATUS_FAIL) return -EIO; return ret; } static int atmel_hsmc_nand_pmecc_write_page(struct mtd_info *mtd, struct nand_chip *chip, const u8 *buf, int oob_required, int page) { return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page, false); } static int atmel_hsmc_nand_pmecc_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, const u8 *buf, int oob_required, int page) { return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page, true); } static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf, bool oob_required, int page, bool raw) { struct mtd_info *mtd = nand_to_mtd(chip); struct atmel_nand *nand = to_atmel_nand(chip); struct atmel_hsmc_nand_controller *nc; int ret; nc = to_hsmc_nand_controller(nand->controller); /* * Optimized read page accessors only work when the NAND R/B pin is * connected to a native SoC R/B pin. If that's not the case, fallback * to the non-optimized one. */ if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB) { nand_read_page_op(chip, page, 0, NULL, 0); return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, raw); } nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0; if (mtd->writesize > 512) nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART; atmel_nfc_set_op_addr(chip, page, 0x0); nc->op.cs = nand->activecs->id; nc->op.data = ATMEL_NFC_READ_DATA; ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw); if (ret) return ret; ret = atmel_nfc_exec_op(nc, true); if (ret) { atmel_nand_pmecc_disable(chip, raw); dev_err(nc->base.dev, "Failed to load NAND page data (err = %d)\n", ret); return ret; } atmel_nfc_copy_from_sram(chip, buf, true); ret = atmel_nand_pmecc_correct_data(chip, buf, raw); atmel_nand_pmecc_disable(chip, raw); return ret; } static int atmel_hsmc_nand_pmecc_read_page(struct mtd_info *mtd, struct nand_chip *chip, u8 *buf, int oob_required, int page) { return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page, false); } static int atmel_hsmc_nand_pmecc_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, u8 *buf, int oob_required, int page) { return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page, true); } static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); struct nand_ecc_ctrl *ecc = &chip->ecc; if (section || !ecc->total) return -ERANGE; oobregion->length = ecc->total; oobregion->offset = mtd->oobsize - oobregion->length; return 0; } static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); struct nand_ecc_ctrl *ecc = &chip->ecc; if (section) return -ERANGE; oobregion->length = mtd->oobsize - ecc->total - 2; oobregion->offset = 2; return 0; } static const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = { .ecc = nand_ooblayout_ecc_lp, .rfree = nand_ooblayout_free_lp, }; const struct mtd_ooblayout_ops *nand_get_large_page_ooblayout(void) { return &nand_ooblayout_lp_ops; } static int atmel_nand_pmecc_init(struct nand_chip *chip) { struct mtd_info *mtd = nand_to_mtd(chip); struct atmel_nand *nand = to_atmel_nand(chip); struct atmel_nand_controller *nc; struct atmel_pmecc_user_req req; nc = to_nand_controller(nand->controller); if (!nc->pmecc) { dev_err(nc->dev, "HW ECC not supported\n"); return -EOPNOTSUPP; } if (nc->caps->legacy_of_bindings) { u32 val; if (!ofnode_read_u32(nc->dev->node_, "atmel,pmecc-cap", &val)) chip->ecc.strength = val; if (!ofnode_read_u32(nc->dev->node_, "atmel,pmecc-sector-size", &val)) chip->ecc.size = val; } if (chip->ecc.options & NAND_ECC_MAXIMIZE) req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH; else if (chip->ecc.strength) req.ecc.strength = chip->ecc.strength; else req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH; if (chip->ecc.size) req.ecc.sectorsize = chip->ecc.size; else req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO; req.pagesize = mtd->writesize; req.oobsize = mtd->oobsize; if (mtd->writesize <= 512) { req.ecc.bytes = 4; req.ecc.ooboffset = 0; } else { req.ecc.bytes = mtd->oobsize - 2; req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO; } nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req); if (IS_ERR(nand->pmecc)) return PTR_ERR(nand->pmecc); chip->ecc.algo = NAND_ECC_BCH; chip->ecc.size = req.ecc.sectorsize; chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors; chip->ecc.strength = req.ecc.strength; chip->options |= NAND_NO_SUBPAGE_WRITE; mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout()); pmecc_config_ecc_layout(&atmel_pmecc_oobinfo, mtd->oobsize, chip->ecc.bytes); chip->ecc.layout = &atmel_pmecc_oobinfo; return 0; } static int atmel_nand_ecc_init(struct nand_chip *chip) { struct atmel_nand_controller *nc; struct atmel_nand *nand = to_atmel_nand(chip); int ret; nc = to_nand_controller(nand->controller); switch (chip->ecc.mode) { case NAND_ECC_NONE: case NAND_ECC_SOFT: /* * Nothing to do, the core will initialize everything for us. */ break; case NAND_ECC_HW: ret = atmel_nand_pmecc_init(chip); if (ret) return ret; chip->ecc.read_page = atmel_nand_pmecc_read_page; chip->ecc.write_page = atmel_nand_pmecc_write_page; chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw; chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw; break; default: /* Other modes are not supported. */ dev_err(nc->dev, "Unsupported ECC mode: %d\n", chip->ecc.mode); return -EOPNOTSUPP; } return 0; } static int atmel_hsmc_nand_ecc_init(struct nand_chip *chip) { int ret; ret = atmel_nand_ecc_init(chip); if (ret) return ret; if (chip->ecc.mode != NAND_ECC_HW) return 0; /* Adjust the ECC operations for the HSMC IP. */ chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page; chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page; chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw; chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw; return 0; } static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand, const struct nand_data_interface *conf, struct atmel_smc_cs_conf *smcconf) { u32 ncycles, totalcycles, timeps, mckperiodps; struct atmel_nand_controller *nc; int ret; nc = to_nand_controller(nand->controller); /* DDR interface not supported. */ if (conf->type != NAND_SDR_IFACE) return -EOPNOTSUPP; /* * tRC < 30ns implies EDO mode. This controller does not support this * mode. */ if (conf->timings.sdr.tRC_min < 30000) return -EOPNOTSUPP; atmel_smc_cs_conf_init(smcconf); mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck); mckperiodps *= 1000; /* * Set write pulse timing. This one is easy to extract: * * NWE_PULSE = tWP */ ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps); totalcycles = ncycles; ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT, ncycles); if (ret) return ret; /* * The write setup timing depends on the operation done on the NAND. * All operations goes through the same data bus, but the operation * type depends on the address we are writing to (ALE/CLE address * lines). * Since we have no way to differentiate the different operations at * the SMC level, we must consider the worst case (the biggest setup * time among all operation types): * * NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE */ timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min, conf->timings.sdr.tALS_min); timeps = max(timeps, conf->timings.sdr.tDS_min); ncycles = DIV_ROUND_UP(timeps, mckperiodps); ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0; totalcycles += ncycles; ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT, ncycles); if (ret) return ret; /* * As for the write setup timing, the write hold timing depends on the * operation done on the NAND: * * NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH) */ timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min, conf->timings.sdr.tALH_min); timeps = max3(timeps, conf->timings.sdr.tDH_min, conf->timings.sdr.tWH_min); ncycles = DIV_ROUND_UP(timeps, mckperiodps); totalcycles += ncycles; /* * The write cycle timing is directly matching tWC, but is also * dependent on the other timings on the setup and hold timings we * calculated earlier, which gives: * * NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD) */ ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps); ncycles = max(totalcycles, ncycles); ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT, ncycles); if (ret) return ret; /* * We don't want the CS line to be toggled between each byte/word * transfer to the NAND. The only way to guarantee that is to have the * NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means: * * NCS_WR_PULSE = NWE_CYCLE */ ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT, ncycles); if (ret) return ret; /* * As for the write setup timing, the read hold timing depends on the * operation done on the NAND: * * NRD_HOLD = max(tREH, tRHOH) */ timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min); ncycles = DIV_ROUND_UP(timeps, mckperiodps); totalcycles = ncycles; /* * TDF = tRHZ - NRD_HOLD */ ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps); ncycles -= totalcycles; /* * In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and * we might end up with a config that does not fit in the TDF field. * Just take the max value in this case and hope that the NAND is more * tolerant than advertised. */ if (ncycles > ATMEL_SMC_MODE_TDF_MAX) ncycles = ATMEL_SMC_MODE_TDF_MAX; else if (ncycles < ATMEL_SMC_MODE_TDF_MIN) ncycles = ATMEL_SMC_MODE_TDF_MIN; smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) | ATMEL_SMC_MODE_TDFMODE_OPTIMIZED; /* * Read pulse timing directly matches tRP: * * NRD_PULSE = tRP */ ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps); totalcycles += ncycles; ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT, ncycles); if (ret) return ret; /* * The write cycle timing is directly matching tWC, but is also * dependent on the setup and hold timings we calculated earlier, * which gives: * * NRD_CYCLE = max(tRC, NRD_PULSE + NRD_HOLD) * * NRD_SETUP is always 0. */ ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps); ncycles = max(totalcycles, ncycles); ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT, ncycles); if (ret) return ret; /* * We don't want the CS line to be toggled between each byte/word * transfer from the NAND. The only way to guarantee that is to have * the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means: * * NCS_RD_PULSE = NRD_CYCLE */ ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT, ncycles); if (ret) return ret; /* Txxx timings are directly matching tXXX ones. */ ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps); ret = atmel_smc_cs_conf_set_timing(smcconf, ATMEL_HSMC_TIMINGS_TCLR_SHIFT, ncycles); if (ret) return ret; ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps); ret = atmel_smc_cs_conf_set_timing(smcconf, ATMEL_HSMC_TIMINGS_TADL_SHIFT, ncycles); /* * Version 4 of the ONFI spec mandates that tADL be at least 400 * nanoseconds, but, depending on the master clock rate, 400 ns may not * fit in the tADL field of the SMC reg. We need to relax the check and * accept the -ERANGE return code. * * Note that previous versions of the ONFI spec had a lower tADL_min * (100 or 200 ns). It's not clear why this timing constraint got * increased but it seems most NANDs are fine with values lower than * 400ns, so we should be safe. */ if (ret && ret != -ERANGE) return ret; ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps); ret = atmel_smc_cs_conf_set_timing(smcconf, ATMEL_HSMC_TIMINGS_TAR_SHIFT, ncycles); if (ret) return ret; ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps); ret = atmel_smc_cs_conf_set_timing(smcconf, ATMEL_HSMC_TIMINGS_TRR_SHIFT, ncycles); if (ret) return ret; ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps); ret = atmel_smc_cs_conf_set_timing(smcconf, ATMEL_HSMC_TIMINGS_TWB_SHIFT, ncycles); if (ret) return ret; /* Attach the CS line to the NFC logic. */ smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL; /* Set the appropriate data bus width. */ if (nand->base.options & NAND_BUSWIDTH_16) smcconf->mode |= ATMEL_SMC_MODE_DBW_16; /* Operate in NRD/NWE READ/WRITEMODE. */ smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD | ATMEL_SMC_MODE_WRITEMODE_NWE; return 0; } static int atmel_smc_nand_setup_data_interface(struct atmel_nand *nand, int csline, const struct nand_data_interface *conf) { struct atmel_nand_controller *nc; struct atmel_smc_cs_conf smcconf; struct atmel_nand_cs *cs; int ret; nc = to_nand_controller(nand->controller); ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf); if (ret) return ret; if (csline == NAND_DATA_IFACE_CHECK_ONLY) return 0; cs = &nand->cs[csline]; cs->smcconf = smcconf; atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf); return 0; } static int atmel_hsmc_nand_setup_data_interface(struct atmel_nand *nand, int csline, const struct nand_data_interface *conf) { struct atmel_hsmc_nand_controller *nc; struct atmel_smc_cs_conf smcconf; struct atmel_nand_cs *cs; int ret; nc = to_hsmc_nand_controller(nand->controller); ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf); if (ret) return ret; if (csline == NAND_DATA_IFACE_CHECK_ONLY) return 0; cs = &nand->cs[csline]; cs->smcconf = smcconf; if (cs->rb.type == ATMEL_NAND_NATIVE_RB) cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id); atmel_hsmc_cs_conf_apply(nc->base.smc, nc->hsmc_layout, cs->id, &cs->smcconf); return 0; } static int atmel_nand_setup_data_interface(struct mtd_info *mtd, int csline, const struct nand_data_interface *conf) { struct nand_chip *chip = mtd_to_nand(mtd); struct atmel_nand *nand = to_atmel_nand(chip); struct atmel_nand_controller *nc; nc = to_nand_controller(nand->controller); if (csline >= nand->numcs || (csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY)) return -EINVAL; return nc->caps->ops->setup_data_interface(nand, csline, conf); } #define NAND_KEEP_TIMINGS 0x00800000 static void atmel_nand_init(struct atmel_nand_controller *nc, struct atmel_nand *nand) { struct nand_chip *chip = &nand->base; struct mtd_info *mtd = nand_to_mtd(chip); mtd->dev->parent = nc->dev; nand->controller = &nc->base; nand->controller = &nc->base; chip->cmd_ctrl = atmel_nand_cmd_ctrl; chip->read_byte = atmel_nand_read_byte; chip->write_byte = atmel_nand_write_byte; chip->read_buf = atmel_nand_read_buf; chip->write_buf = atmel_nand_write_buf; chip->select_chip = atmel_nand_select_chip; chip->setup_data_interface = atmel_nand_setup_data_interface; if (!nc->mck || !nc->caps->ops->setup_data_interface) chip->options |= NAND_KEEP_TIMINGS; /* Some NANDs require a longer delay than the default one (20us). */ chip->chip_delay = 40; /* Default to HW ECC if pmecc is available. */ if (nc->pmecc) chip->ecc.mode = NAND_ECC_HW; } static void atmel_smc_nand_init(struct atmel_nand_controller *nc, struct atmel_nand *nand) { struct atmel_smc_nand_controller *smc_nc; int i; atmel_nand_init(nc, nand); smc_nc = to_smc_nand_controller(nand->controller); if (!smc_nc->ebi_csa_regmap) return; /* Attach the CS to the NAND Flash logic. */ for (i = 0; i < nand->numcs; i++) regmap_update_bits(smc_nc->ebi_csa_regmap, smc_nc->ebi_csa->offs, BIT(nand->cs[i].id), BIT(nand->cs[i].id)); if (smc_nc->ebi_csa->nfd0_on_d16) regmap_update_bits(smc_nc->ebi_csa_regmap, smc_nc->ebi_csa->offs, smc_nc->ebi_csa->nfd0_on_d16, smc_nc->ebi_csa->nfd0_on_d16); } static void atmel_hsmc_nand_init(struct atmel_nand_controller *nc, struct atmel_nand *nand) { struct nand_chip *chip = &nand->base; atmel_nand_init(nc, nand); /* Overload some methods for the HSMC controller. */ chip->cmd_ctrl = atmel_hsmc_nand_cmd_ctrl; chip->select_chip = atmel_hsmc_nand_select_chip; } static int atmel_nand_controller_remove_nand(struct atmel_nand *nand) { list_del(&nand->node); return 0; } static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc, ofnode np, int reg_cells) { struct atmel_nand *nand; ofnode n; int numcs = 0; int ret, i; u32 val; fdt32_t faddr; phys_addr_t base; /* Count num of nand nodes */ ofnode_for_each_subnode(n, ofnode_get_parent(np)) numcs++; if (numcs < 1) { dev_err(nc->dev, "Missing or invalid reg property\n"); return ERR_PTR(-EINVAL); } nand = devm_kzalloc(nc->dev, sizeof(struct atmel_nand) + (numcs * sizeof(struct atmel_nand_cs)), GFP_KERNEL); if (!nand) { dev_err(nc->dev, "Failed to allocate NAND object\n"); return ERR_PTR(-ENOMEM); } nand->numcs = numcs; gpio_request_by_name_nodev(np, "det-gpios", 0, &nand->cdgpio, GPIOD_IS_IN); for (i = 0; i < numcs; i++) { ret = ofnode_read_u32(np, "reg", &val); if (ret) { dev_err(nc->dev, "Invalid reg property (err = %d)\n", ret); return ERR_PTR(ret); } nand->cs[i].id = val; /* Read base address */ struct resource res; if (ofnode_read_resource(np, 0, &res)) { dev_err(nc->dev, "Unable to read resource\n"); return ERR_PTR(-ENOMEM); } faddr = cpu_to_fdt32(val); base = ofnode_translate_address(np, &faddr); nand->cs[i].io.virt = (void *)base; if (!ofnode_read_u32(np, "atmel,rb", &val)) { if (val > ATMEL_NFC_MAX_RB_ID) return ERR_PTR(-EINVAL); nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB; nand->cs[i].rb.id = val; } else { gpio_request_by_name_nodev(np, "rb-gpios", 0, &nand->cs[i].rb.gpio, GPIOD_IS_IN); nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB; } gpio_request_by_name_nodev(np, "cs-gpios", 0, &nand->cs[i].csgpio, GPIOD_IS_OUT); } nand_set_flash_node(&nand->base, np); return nand; } static int nand_attach(struct nand_chip *chip) { struct atmel_nand *nand = to_atmel_nand(chip); if (nand->controller->ops && nand->controller->ops->attach_chip) return nand->controller->ops->attach_chip(chip); return 0; } int atmel_nand_scan(struct mtd_info *mtd, int maxchips) { int ret; ret = nand_scan_ident(mtd, maxchips, NULL); if (ret) return ret; ret = nand_attach(mtd_to_nand(mtd)); if (ret) return ret; ret = nand_scan_tail(mtd); return ret; } static int atmel_nand_controller_add_nand(struct atmel_nand_controller *nc, struct atmel_nand *nand) { struct nand_chip *chip = &nand->base; struct mtd_info *mtd = nand_to_mtd(chip); int ret; /* No card inserted, skip this NAND. */ if (dm_gpio_is_valid(&nand->cdgpio) && dm_gpio_get_value(&nand->cdgpio)) { dev_info(nc->dev, "No SmartMedia card inserted.\n"); return 0; } nc->caps->ops->nand_init(nc, nand); ret = atmel_nand_scan(mtd, nand->numcs); if (ret) { dev_err(nc->dev, "NAND scan failed: %d\n", ret); return ret; } ret = nand_register(0, mtd); if (ret) { dev_err(nc->dev, "nand register failed: %d\n", ret); return ret; } list_add_tail(&nand->node, &nc->chips); return 0; } static int atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc) { struct atmel_nand *nand, *tmp; int ret; list_for_each_entry_safe(nand, tmp, &nc->chips, node) { ret = atmel_nand_controller_remove_nand(nand); if (ret) return ret; } return 0; } static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc) { ofnode np; ofnode nand_np; int ret, reg_cells; u32 val; /* TODO: * Add support for legacy nands */ np = nc->dev->node_; ret = ofnode_read_u32(np, "#address-cells", &val); if (ret) { dev_err(nc->dev, "missing #address-cells property\n"); return ret; } reg_cells = val; ret = ofnode_read_u32(np, "#size-cells", &val); if (ret) { dev_err(nc->dev, "missing #size-cells property\n"); return ret; } reg_cells += val; ofnode_for_each_subnode(nand_np, np) { struct atmel_nand *nand; nand = atmel_nand_create(nc, nand_np, reg_cells); if (IS_ERR(nand)) { ret = PTR_ERR(nand); goto err; } ret = atmel_nand_controller_add_nand(nc, nand); if (ret) goto err; } return 0; err: atmel_nand_controller_remove_nands(nc); return ret; } static const struct atmel_smc_nand_ebi_csa_cfg at91sam9260_ebi_csa = { .offs = AT91SAM9260_MATRIX_EBICSA, }; static const struct atmel_smc_nand_ebi_csa_cfg at91sam9261_ebi_csa = { .offs = AT91SAM9261_MATRIX_EBICSA, }; static const struct atmel_smc_nand_ebi_csa_cfg at91sam9263_ebi_csa = { .offs = AT91SAM9263_MATRIX_EBI0CSA, }; static const struct atmel_smc_nand_ebi_csa_cfg at91sam9rl_ebi_csa = { .offs = AT91SAM9RL_MATRIX_EBICSA, }; static const struct atmel_smc_nand_ebi_csa_cfg at91sam9g45_ebi_csa = { .offs = AT91SAM9G45_MATRIX_EBICSA, }; static const struct atmel_smc_nand_ebi_csa_cfg at91sam9n12_ebi_csa = { .offs = AT91SAM9N12_MATRIX_EBICSA, }; static const struct atmel_smc_nand_ebi_csa_cfg at91sam9x5_ebi_csa = { .offs = AT91SAM9X5_MATRIX_EBICSA, }; static const struct atmel_smc_nand_ebi_csa_cfg sam9x60_ebi_csa = { .offs = AT91_SFR_CCFG_EBICSA, .nfd0_on_d16 = AT91_SFR_CCFG_NFD0_ON_D16, }; static const struct udevice_id atmel_ebi_csa_regmap_of_ids[] = { { .compatible = "atmel,at91sam9260-matrix", .data = (ulong)&at91sam9260_ebi_csa, }, { .compatible = "atmel,at91sam9261-matrix", .data = (ulong)&at91sam9261_ebi_csa, }, { .compatible = "atmel,at91sam9263-matrix", .data = (ulong)&at91sam9263_ebi_csa, }, { .compatible = "atmel,at91sam9rl-matrix", .data = (ulong)&at91sam9rl_ebi_csa, }, { .compatible = "atmel,at91sam9g45-matrix", .data = (ulong)&at91sam9g45_ebi_csa, }, { .compatible = "atmel,at91sam9n12-matrix", .data = (ulong)&at91sam9n12_ebi_csa, }, { .compatible = "atmel,at91sam9x5-matrix", .data = (ulong)&at91sam9x5_ebi_csa, }, { .compatible = "microchip,sam9x60-sfr", .data = (ulong)&sam9x60_ebi_csa, }, { /* sentinel */ }, }; static int atmel_nand_attach_chip(struct nand_chip *chip) { struct atmel_nand *nand = to_atmel_nand(chip); struct atmel_nand_controller *nc = to_nand_controller(nand->controller); struct mtd_info *mtd = nand_to_mtd(chip); int ret; ret = nc->caps->ops->ecc_init(chip); if (ret) return ret; if (nc->caps->legacy_of_bindings || !ofnode_valid(nc->dev->node_)) { /* * We keep the MTD name unchanged to avoid breaking platforms * where the MTD cmdline parser is used and the bootloader * has not been updated to use the new naming scheme. */ mtd->name = "atmel_nand"; } else if (!mtd->name) { /* * If the new bindings are used and the bootloader has not been * updated to pass a new mtdparts parameter on the cmdline, you * should define the following property in your nand node: * * label = "atmel_nand"; * * This way, mtd->name will be set by the core when * nand_set_flash_node() is called. */ sprintf(mtd->name, "%s:nand.%d", nc->dev->name, nand->cs[0].id); } return 0; } static const struct nand_controller_ops atmel_nand_controller_ops = { .attach_chip = atmel_nand_attach_chip, }; static int atmel_nand_controller_init(struct atmel_nand_controller *nc, struct udevice *dev, const struct atmel_nand_controller_caps *caps) { struct ofnode_phandle_args args; int ret; nc->base.ops = &atmel_nand_controller_ops; INIT_LIST_HEAD(&nc->chips); nc->dev = dev; nc->caps = caps; nc->pmecc = devm_atmel_pmecc_get(dev); if (IS_ERR(nc->pmecc)) { ret = PTR_ERR(nc->pmecc); if (ret != -EPROBE_DEFER) dev_err(dev, "Could not get PMECC object (err = %d)\n", ret); return ret; } /* We do not retrieve the SMC syscon when parsing old DTs. */ if (nc->caps->legacy_of_bindings) return 0; nc->mck = devm_kzalloc(dev, sizeof(nc->mck), GFP_KERNEL); if (!nc->mck) return -ENOMEM; clk_get_by_index(dev->parent, 0, nc->mck); if (IS_ERR(nc->mck)) { dev_err(dev, "Failed to retrieve MCK clk\n"); return PTR_ERR(nc->mck); } ret = ofnode_parse_phandle_with_args(dev->parent->node_, "atmel,smc", NULL, 0, 0, &args); if (ret) { dev_err(dev, "Missing or invalid atmel,smc property\n"); return -EINVAL; } nc->smc = syscon_node_to_regmap(args.node); if (IS_ERR(nc->smc)) { ret = PTR_ERR(nc->smc); dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret); return 0; } return 0; } static int atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc) { struct udevice *dev = nc->base.dev; struct ofnode_phandle_args args; const struct udevice_id *match = NULL; const char *name; int ret; int len; int i; /* We do not retrieve the EBICSA regmap when parsing old DTs. */ if (nc->base.caps->legacy_of_bindings) return 0; ret = ofnode_parse_phandle_with_args(dev->parent->node_, nc->base.caps->ebi_csa_regmap_name, NULL, 0, 0, &args); if (ret) { dev_err(dev, "Unable to read ebi csa regmap\n"); return -EINVAL; } name = ofnode_get_property(args.node, "compatible", &len); for (i = 0; i < ARRAY_SIZE(atmel_ebi_csa_regmap_of_ids); i++) { if (!strcmp(name, atmel_ebi_csa_regmap_of_ids[i].compatible)) { match = &atmel_ebi_csa_regmap_of_ids[i]; break; } } if (!match) { dev_err(dev, "Unable to find ebi csa conf"); return -EINVAL; } nc->ebi_csa = (struct atmel_smc_nand_ebi_csa_cfg *)match->data; nc->ebi_csa_regmap = syscon_node_to_regmap(args.node); if (IS_ERR(nc->ebi_csa_regmap)) { ret = PTR_ERR(nc->ebi_csa_regmap); dev_err(dev, "Could not get EBICSA regmap (err = %d)\n", ret); return ret; } /* TODO: * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1 * add 4 to ->ebi_csa->offs. */ return 0; } static int atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc) { struct udevice *dev = nc->base.dev; struct ofnode_phandle_args args; struct clk smc_clk; int ret; u32 addr; ret = ofnode_parse_phandle_with_args(dev->parent->node_, "atmel,smc", NULL, 0, 0, &args); if (ret) { dev_err(dev, "Missing or invalid atmel,smc property\n"); return -EINVAL; } nc->hsmc_layout = atmel_hsmc_get_reg_layout(args.node); if (IS_ERR(nc->hsmc_layout)) { dev_err(dev, "Could not get hsmc layout\n"); return -EINVAL; } /* Enable smc clock */ ret = clk_get_by_index_nodev(args.node, 0, &smc_clk); if (ret) { dev_err(dev, "Unable to get smc clock (err = %d)", ret); return ret; } ret = clk_prepare_enable(&smc_clk); if (ret) return ret; ret = ofnode_parse_phandle_with_args(dev->node_, "atmel,nfc-io", NULL, 0, 0, &args); if (ret) { dev_err(dev, "Missing or invalid atmel,nfc-io property\n"); return -EINVAL; } nc->io = syscon_node_to_regmap(args.node); if (IS_ERR(nc->io)) { ret = PTR_ERR(nc->io); dev_err(dev, "Could not get NFC IO regmap\n"); return ret; } ret = ofnode_parse_phandle_with_args(dev->node_, "atmel,nfc-sram", NULL, 0, 0, &args); if (ret) { dev_err(dev, "Missing or invalid atmel,nfc-sram property\n"); return ret; } ret = ofnode_read_u32(args.node, "reg", &addr); if (ret) { dev_err(dev, "Could not read reg addr of nfc sram"); return ret; } nc->sram.virt = (void *)addr; return 0; } static int atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc) { struct atmel_hsmc_nand_controller *hsmc_nc; int ret; ret = atmel_nand_controller_remove_nands(nc); if (ret) return ret; hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base); if (hsmc_nc->clk) { clk_disable_unprepare(hsmc_nc->clk); devm_clk_put(nc->dev, hsmc_nc->clk); } return 0; } static int atmel_hsmc_nand_controller_probe(struct udevice *dev, const struct atmel_nand_controller_caps *caps) { struct atmel_hsmc_nand_controller *nc; int ret; nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL); if (!nc) return -ENOMEM; ret = atmel_nand_controller_init(&nc->base, dev, caps); if (ret) return ret; ret = atmel_hsmc_nand_controller_init(nc); if (ret) return ret; /* Make sure all irqs are masked before registering our IRQ handler. */ regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff); /* Initial NFC configuration. */ regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG, ATMEL_HSMC_NFC_CFG_DTO_MAX); ret = atmel_nand_controller_add_nands(&nc->base); if (ret) goto err; return 0; err: atmel_hsmc_nand_controller_remove(&nc->base); return ret; } static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = { .probe = atmel_hsmc_nand_controller_probe, .remove = atmel_hsmc_nand_controller_remove, .ecc_init = atmel_hsmc_nand_ecc_init, .nand_init = atmel_hsmc_nand_init, .setup_data_interface = atmel_hsmc_nand_setup_data_interface, }; static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = { .has_dma = true, .ale_offs = BIT(21), .cle_offs = BIT(22), .ops = &atmel_hsmc_nc_ops, }; static int atmel_smc_nand_controller_probe(struct udevice *dev, const struct atmel_nand_controller_caps *caps) { struct atmel_smc_nand_controller *nc; int ret; nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL); if (!nc) return -ENOMEM; ret = atmel_nand_controller_init(&nc->base, dev, caps); if (ret) return ret; ret = atmel_smc_nand_controller_init(nc); if (ret) return ret; return atmel_nand_controller_add_nands(&nc->base); } static int atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc) { int ret; ret = atmel_nand_controller_remove_nands(nc); if (ret) return ret; return 0; } /* * The SMC reg layout of at91rm9200 is completely different which prevents us * from re-using atmel_smc_nand_setup_data_interface() for the * ->setup_data_interface() hook. * At this point, there's no support for the at91rm9200 SMC IP, so we leave * ->setup_data_interface() unassigned. */ static const struct atmel_nand_controller_ops at91rm9200_nc_ops = { .probe = atmel_smc_nand_controller_probe, .remove = atmel_smc_nand_controller_remove, .ecc_init = atmel_nand_ecc_init, .nand_init = atmel_smc_nand_init, }; static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = { .ale_offs = BIT(21), .cle_offs = BIT(22), .ebi_csa_regmap_name = "atmel,matrix", .ops = &at91rm9200_nc_ops, }; static const struct atmel_nand_controller_ops atmel_smc_nc_ops = { .probe = atmel_smc_nand_controller_probe, .remove = atmel_smc_nand_controller_remove, .ecc_init = atmel_nand_ecc_init, .nand_init = atmel_smc_nand_init, .setup_data_interface = atmel_smc_nand_setup_data_interface, }; static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = { .ale_offs = BIT(21), .cle_offs = BIT(22), .ebi_csa_regmap_name = "atmel,matrix", .ops = &atmel_smc_nc_ops, }; static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = { .ale_offs = BIT(22), .cle_offs = BIT(21), .ebi_csa_regmap_name = "atmel,matrix", .ops = &atmel_smc_nc_ops, }; static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = { .has_dma = true, .ale_offs = BIT(21), .cle_offs = BIT(22), .ebi_csa_regmap_name = "atmel,matrix", .ops = &atmel_smc_nc_ops, }; static const struct atmel_nand_controller_caps microchip_sam9x60_nc_caps = { .has_dma = true, .ale_offs = BIT(21), .cle_offs = BIT(22), .ebi_csa_regmap_name = "microchip,sfr", .ops = &atmel_smc_nc_ops, }; /* Only used to parse old bindings. */ static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = { .ale_offs = BIT(21), .cle_offs = BIT(22), .ops = &atmel_smc_nc_ops, .legacy_of_bindings = true, }; static const struct udevice_id atmel_nand_controller_of_ids[] = { { .compatible = "atmel,at91rm9200-nand-controller", .data = (ulong)&atmel_rm9200_nc_caps, }, { .compatible = "atmel,at91sam9260-nand-controller", .data = (ulong)&atmel_sam9260_nc_caps, }, { .compatible = "atmel,at91sam9261-nand-controller", .data = (ulong)&atmel_sam9261_nc_caps, }, { .compatible = "atmel,at91sam9g45-nand-controller", .data = (ulong)&atmel_sam9g45_nc_caps, }, { .compatible = "atmel,sama5d3-nand-controller", .data = (ulong)&atmel_sama5_nc_caps, }, { .compatible = "microchip,sam9x60-nand-controller", .data = (ulong)µchip_sam9x60_nc_caps, }, /* Support for old/deprecated bindings: */ { .compatible = "atmel,at91rm9200-nand", .data = (ulong)&atmel_rm9200_nand_caps, }, { .compatible = "atmel,sama5d4-nand", .data = (ulong)&atmel_rm9200_nand_caps, }, { .compatible = "atmel,sama5d2-nand", .data = (ulong)&atmel_rm9200_nand_caps, }, { /* sentinel */ }, }; static int atmel_nand_controller_probe(struct udevice *dev) { const struct atmel_nand_controller_caps *caps; struct udevice *pmecc_dev; caps = (struct atmel_nand_controller_caps *)dev_get_driver_data(dev); if (!caps) { printf("Could not retrieve NFC caps\n"); return -EINVAL; } /* Probe pmecc driver */ if (uclass_get_device(UCLASS_MTD, 1, &pmecc_dev)) { printf("%s: get device fail\n", __func__); return -EINVAL; } return caps->ops->probe(dev, caps); } static int atmel_nand_controller_remove(struct udevice *dev) { struct atmel_nand_controller *nc; nc = (struct atmel_nand_controller *)dev_get_driver_data(dev); return nc->caps->ops->remove(nc); } U_BOOT_DRIVER(atmel_nand_controller) = { .name = "atmel-nand-controller", .id = UCLASS_MTD, .of_match = atmel_nand_controller_of_ids, .probe = atmel_nand_controller_probe, .remove = atmel_nand_controller_remove, }; void board_nand_init(void) { struct udevice *dev; int ret; ret = uclass_get_device_by_driver(UCLASS_MTD, DM_DRIVER_GET(atmel_nand_controller), &dev); if (ret && ret != -ENODEV) printf("Failed to initialize NAND controller. (error %d)\n", ret); }