// SPDX-License-Identifier: GPL-2.0+ /* * BTRFS filesystem implementation for U-Boot * * 2017 Marek BehĂșn, CZ.NIC, kabel@kernel.org */ #include #include #include #include "btrfs.h" #include "disk-io.h" #include "volumes.h" /* * Read the content of symlink inode @ino of @root, into @target. * NOTE: @target will not be \0 termiated, caller should handle it properly. * * Return the number of read data. * Return <0 for error. */ int btrfs_readlink(struct btrfs_root *root, u64 ino, char *target) { struct btrfs_path path; struct btrfs_key key; struct btrfs_file_extent_item *fi; int ret; key.objectid = ino; key.type = BTRFS_EXTENT_DATA_KEY; key.offset = 0; btrfs_init_path(&path); ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0); if (ret < 0) return ret; if (ret > 0) { ret = -ENOENT; goto out; } fi = btrfs_item_ptr(path.nodes[0], path.slots[0], struct btrfs_file_extent_item); if (btrfs_file_extent_type(path.nodes[0], fi) != BTRFS_FILE_EXTENT_INLINE) { ret = -EUCLEAN; error("Extent for symlink %llu must be INLINE type!", ino); goto out; } if (btrfs_file_extent_compression(path.nodes[0], fi) != BTRFS_COMPRESS_NONE) { ret = -EUCLEAN; error("Extent for symlink %llu must not be compressed!", ino); goto out; } if (btrfs_file_extent_ram_bytes(path.nodes[0], fi) >= root->fs_info->sectorsize) { ret = -EUCLEAN; error("Symlink %llu extent data too large (%llu)!\n", ino, btrfs_file_extent_ram_bytes(path.nodes[0], fi)); goto out; } read_extent_buffer(path.nodes[0], target, btrfs_file_extent_inline_start(fi), btrfs_file_extent_ram_bytes(path.nodes[0], fi)); ret = btrfs_file_extent_ram_bytes(path.nodes[0], fi); out: btrfs_release_path(&path); return ret; } static int lookup_root_ref(struct btrfs_fs_info *fs_info, u64 rootid, u64 *root_ret, u64 *dir_ret) { struct btrfs_root *root = fs_info->tree_root; struct btrfs_root_ref *root_ref; struct btrfs_path path; struct btrfs_key key; int ret; btrfs_init_path(&path); key.objectid = rootid; key.type = BTRFS_ROOT_BACKREF_KEY; key.offset = (u64)-1; ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0); if (ret < 0) return ret; /* Should not happen */ if (ret == 0) { ret = -EUCLEAN; goto out; } ret = btrfs_previous_item(root, &path, rootid, BTRFS_ROOT_BACKREF_KEY); if (ret < 0) goto out; if (ret > 0) { ret = -ENOENT; goto out; } btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); root_ref = btrfs_item_ptr(path.nodes[0], path.slots[0], struct btrfs_root_ref); *root_ret = key.offset; *dir_ret = btrfs_root_ref_dirid(path.nodes[0], root_ref); out: btrfs_release_path(&path); return ret; } /* * To get the parent inode of @ino of @root. * * @root_ret and @ino_ret will be filled. * * NOTE: This function is not reliable. It can only get one parent inode. * The get the proper parent inode, we need a full VFS inodes stack to * resolve properly. */ static int get_parent_inode(struct btrfs_root *root, u64 ino, struct btrfs_root **root_ret, u64 *ino_ret) { struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_path path; struct btrfs_key key; int ret; if (ino == BTRFS_FIRST_FREE_OBJECTID) { u64 parent_root = -1; /* It's top level already, no more parent */ if (root->root_key.objectid == BTRFS_FS_TREE_OBJECTID) { *root_ret = fs_info->fs_root; *ino_ret = BTRFS_FIRST_FREE_OBJECTID; return 0; } ret = lookup_root_ref(fs_info, root->root_key.objectid, &parent_root, ino_ret); if (ret < 0) return ret; key.objectid = parent_root; key.type = BTRFS_ROOT_ITEM_KEY; key.offset = (u64)-1; *root_ret = btrfs_read_fs_root(fs_info, &key); if (IS_ERR(*root_ret)) return PTR_ERR(*root_ret); return 0; } btrfs_init_path(&path); key.objectid = ino; key.type = BTRFS_INODE_REF_KEY; key.offset = (u64)-1; ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0); if (ret < 0) return ret; /* Should not happen */ if (ret == 0) { ret = -EUCLEAN; goto out; } ret = btrfs_previous_item(root, &path, ino, BTRFS_INODE_REF_KEY); if (ret < 0) goto out; if (ret > 0) { ret = -ENOENT; goto out; } btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); *root_ret = root; *ino_ret = key.offset; out: btrfs_release_path(&path); return ret; } static inline int next_length(const char *path) { int res = 0; while (*path != '\0' && *path != '/') { ++res; ++path; if (res > BTRFS_NAME_LEN) break; } return res; } static inline const char *skip_current_directories(const char *cur) { while (1) { if (cur[0] == '/') ++cur; else if (cur[0] == '.' && cur[1] == '/') cur += 2; else break; } return cur; } /* * Resolve one filename of @ino of @root. * * key_ret: The child key (either INODE_ITEM or ROOT_ITEM type) * type_ret: BTRFS_FT_* of the child inode. * * Return 0 with above members filled. * Return <0 for error. */ static int resolve_one_filename(struct btrfs_root *root, u64 ino, const char *name, int namelen, struct btrfs_key *key_ret, u8 *type_ret) { struct btrfs_dir_item *dir_item; struct btrfs_path path; int ret = 0; btrfs_init_path(&path); dir_item = btrfs_lookup_dir_item(NULL, root, &path, ino, name, namelen, 0); if (IS_ERR(dir_item)) { ret = PTR_ERR(dir_item); goto out; } btrfs_dir_item_key_to_cpu(path.nodes[0], dir_item, key_ret); *type_ret = btrfs_dir_type(path.nodes[0], dir_item); out: btrfs_release_path(&path); return ret; } /* * Resolve a full path @filename. The start point is @ino of @root. * * The result will be filled into @root_ret, @ino_ret and @type_ret. */ int btrfs_lookup_path(struct btrfs_root *root, u64 ino, const char *filename, struct btrfs_root **root_ret, u64 *ino_ret, u8 *type_ret, int symlink_limit) { struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_root *next_root; struct btrfs_key key; const char *cur = filename; u64 next_ino; u8 next_type; u8 type = BTRFS_FT_UNKNOWN; int len; int ret = 0; /* If the path is absolute path, also search from fs root */ if (*cur == '/') { root = fs_info->fs_root; ino = btrfs_root_dirid(&root->root_item); type = BTRFS_FT_DIR; } while (*cur != '\0') { cur = skip_current_directories(cur); len = next_length(cur); if (len > BTRFS_NAME_LEN) { error("%s: Name too long at \"%.*s\"", __func__, BTRFS_NAME_LEN, cur); return -ENAMETOOLONG; } if (len == 1 && cur[0] == '.') break; if (len == 2 && cur[0] == '.' && cur[1] == '.') { /* Go one level up */ ret = get_parent_inode(root, ino, &next_root, &next_ino); if (ret < 0) return ret; root = next_root; ino = next_ino; goto next; } if (!*cur) break; ret = resolve_one_filename(root, ino, cur, len, &key, &type); if (ret < 0) return ret; if (key.type == BTRFS_ROOT_ITEM_KEY) { /* Child inode is a subvolume */ next_root = btrfs_read_fs_root(fs_info, &key); if (IS_ERR(next_root)) return PTR_ERR(next_root); root = next_root; ino = btrfs_root_dirid(&root->root_item); } else if (type == BTRFS_FT_SYMLINK && symlink_limit >= 0) { /* Child inode is a symlink */ char *target; if (symlink_limit == 0) { error("%s: Too much symlinks!", __func__); return -EMLINK; } target = malloc(fs_info->sectorsize); if (!target) return -ENOMEM; ret = btrfs_readlink(root, key.objectid, target); if (ret < 0) { free(target); return ret; } target[ret] = '\0'; ret = btrfs_lookup_path(root, ino, target, &next_root, &next_ino, &next_type, symlink_limit); if (ret < 0) return ret; root = next_root; ino = next_ino; type = next_type; } else { /* Child inode is an inode */ ino = key.objectid; } next: cur += len; } /* We haven't found anything, but still get no error? */ if (type == BTRFS_FT_UNKNOWN && !ret) ret = -EUCLEAN; if (!ret) { *root_ret = root; *ino_ret = ino; *type_ret = type; } return ret; } /* * Read out inline extent. * * Since inline extent should only exist for offset 0, no need for extra * parameters. * Truncating should be handled by the caller. * * Return the number of bytes read. * Return <0 for error. */ int btrfs_read_extent_inline(struct btrfs_path *path, struct btrfs_file_extent_item *fi, char *dest) { struct extent_buffer *leaf = path->nodes[0]; int slot = path->slots[0]; char *cbuf = NULL; char *dbuf = NULL; u32 csize; u32 dsize; int ret; csize = btrfs_file_extent_inline_item_len(leaf, btrfs_item_nr(slot)); if (btrfs_file_extent_compression(leaf, fi) == BTRFS_COMPRESS_NONE) { /* Uncompressed, just read it out */ read_extent_buffer(leaf, dest, btrfs_file_extent_inline_start(fi), csize); return csize; } /* Compressed extent, prepare the compressed and data buffer */ dsize = btrfs_file_extent_ram_bytes(leaf, fi); cbuf = malloc(csize); dbuf = malloc(dsize); if (!cbuf || !dbuf) { ret = -ENOMEM; goto out; } read_extent_buffer(leaf, cbuf, btrfs_file_extent_inline_start(fi), csize); ret = btrfs_decompress(btrfs_file_extent_compression(leaf, fi), cbuf, csize, dbuf, dsize); if (ret == (u32)-1) { ret = -EIO; goto out; } /* * The compressed part ends before sector boundary, the remaining needs * to be zeroed out. */ if (ret < dsize) memset(dbuf + ret, 0, dsize - ret); memcpy(dest, dbuf, dsize); ret = dsize; out: free(cbuf); free(dbuf); return ret; } /* * Read out regular extent. * * Truncating should be handled by the caller. * * @offset and @len should not cross the extent boundary. * Return the number of bytes read. * Return <0 for error. */ int btrfs_read_extent_reg(struct btrfs_path *path, struct btrfs_file_extent_item *fi, u64 offset, int len, char *dest) { struct extent_buffer *leaf = path->nodes[0]; struct btrfs_fs_info *fs_info = leaf->fs_info; struct btrfs_key key; u64 extent_num_bytes; u64 disk_bytenr; u64 read; char *cbuf = NULL; char *dbuf = NULL; u32 csize; u32 dsize; bool finished = false; int num_copies; int i; int slot = path->slots[0]; int ret; btrfs_item_key_to_cpu(leaf, &key, slot); extent_num_bytes = btrfs_file_extent_num_bytes(leaf, fi); ASSERT(IS_ALIGNED(offset, fs_info->sectorsize) && IS_ALIGNED(len, fs_info->sectorsize)); ASSERT(offset >= key.offset && offset + len <= key.offset + extent_num_bytes); /* Preallocated or hole , fill @dest with zero */ if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_PREALLOC || btrfs_file_extent_disk_bytenr(leaf, fi) == 0) { memset(dest, 0, len); return len; } if (btrfs_file_extent_compression(leaf, fi) == BTRFS_COMPRESS_NONE) { u64 logical; logical = btrfs_file_extent_disk_bytenr(leaf, fi) + btrfs_file_extent_offset(leaf, fi) + offset - key.offset; read = len; num_copies = btrfs_num_copies(fs_info, logical, len); for (i = 1; i <= num_copies; i++) { ret = read_extent_data(fs_info, dest, logical, &read, i); if (ret < 0 || read != len) continue; finished = true; break; } if (!finished) return -EIO; return len; } csize = btrfs_file_extent_disk_num_bytes(leaf, fi); dsize = btrfs_file_extent_ram_bytes(leaf, fi); disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); num_copies = btrfs_num_copies(fs_info, disk_bytenr, csize); cbuf = malloc_cache_aligned(csize); dbuf = malloc_cache_aligned(dsize); if (!cbuf || !dbuf) { ret = -ENOMEM; goto out; } /* For compressed extent, we must read the whole on-disk extent */ for (i = 1; i <= num_copies; i++) { read = csize; ret = read_extent_data(fs_info, cbuf, disk_bytenr, &read, i); if (ret < 0 || read != csize) continue; finished = true; break; } if (!finished) { ret = -EIO; goto out; } ret = btrfs_decompress(btrfs_file_extent_compression(leaf, fi), cbuf, csize, dbuf, dsize); if (ret == (u32)-1) { ret = -EIO; goto out; } /* * The compressed part ends before sector boundary, the remaining needs * to be zeroed out. */ if (ret < dsize) memset(dbuf + ret, 0, dsize - ret); /* Then copy the needed part */ memcpy(dest, dbuf + btrfs_file_extent_offset(leaf, fi) + offset - key.offset, len); ret = len; out: free(cbuf); free(dbuf); return ret; } /* * Get the first file extent that covers bytenr @file_offset. * * @file_offset must be aligned to sectorsize. * * return 0 for found, and path points to the file extent. * return >0 for not found, and fill @next_offset. * @next_offset can be 0 if there is no next file extent. * return <0 for error. */ static int lookup_data_extent(struct btrfs_root *root, struct btrfs_path *path, u64 ino, u64 file_offset, u64 *next_offset) { struct btrfs_key key; struct btrfs_file_extent_item *fi; u8 extent_type; int ret = 0; ASSERT(IS_ALIGNED(file_offset, root->fs_info->sectorsize)); key.objectid = ino; key.type = BTRFS_EXTENT_DATA_KEY; key.offset = file_offset; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); /* Error or we're already at the file extent */ if (ret <= 0) return ret; /* Check previous file extent */ ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY); if (ret < 0) return ret; if (ret > 0) goto check_next; /* Now the key.offset must be smaller than @file_offset */ btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) goto check_next; fi = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_file_extent_item); extent_type = btrfs_file_extent_type(path->nodes[0], fi); if (extent_type == BTRFS_FILE_EXTENT_INLINE) { if (file_offset == 0) return 0; /* Inline extent should be the only extent, no next extent. */ *next_offset = 0; return 1; } /* This file extent covers @file_offset */ if (key.offset <= file_offset && key.offset + btrfs_file_extent_num_bytes(path->nodes[0], fi) > file_offset) return 0; check_next: ret = btrfs_next_item(root, path); if (ret < 0) return ret; if (ret > 0) { *next_offset = 0; return 1; } btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); fi = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_file_extent_item); /* Next next data extent */ if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) { *next_offset = 0; return 1; } /* Current file extent already beyond @file_offset */ if (key.offset > file_offset) { *next_offset = key.offset; return 1; } /* This file extent covers @file_offset */ if (key.offset <= file_offset && key.offset + btrfs_file_extent_num_bytes(path->nodes[0], fi) > file_offset) return 0; /* This file extent ends before @file_offset, check next */ ret = btrfs_next_item(root, path); if (ret < 0) return ret; if (ret > 0) { *next_offset = 0; return 1; } btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); if (key.type != BTRFS_EXTENT_DATA_KEY || key.objectid != ino) { *next_offset = 0; return 1; } *next_offset = key.offset; return 1; } static int read_and_truncate_page(struct btrfs_path *path, struct btrfs_file_extent_item *fi, int start, int len, char *dest) { struct extent_buffer *leaf = path->nodes[0]; struct btrfs_fs_info *fs_info = leaf->fs_info; u64 aligned_start = round_down(start, fs_info->sectorsize); u8 extent_type; char *buf; int page_off = start - aligned_start; int page_len = fs_info->sectorsize - page_off; int ret; ASSERT(start + len <= aligned_start + fs_info->sectorsize); buf = malloc_cache_aligned(fs_info->sectorsize); if (!buf) return -ENOMEM; extent_type = btrfs_file_extent_type(leaf, fi); if (extent_type == BTRFS_FILE_EXTENT_INLINE) { ret = btrfs_read_extent_inline(path, fi, buf); memcpy(dest, buf + page_off, min(page_len, ret)); free(buf); return len; } ret = btrfs_read_extent_reg(path, fi, round_down(start, fs_info->sectorsize), fs_info->sectorsize, buf); if (ret < 0) { free(buf); return ret; } memcpy(dest, buf + page_off, page_len); free(buf); return len; } int btrfs_file_read(struct btrfs_root *root, u64 ino, u64 file_offset, u64 len, char *dest) { struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_file_extent_item *fi; struct btrfs_path path; struct btrfs_key key; u64 aligned_start = round_down(file_offset, fs_info->sectorsize); u64 aligned_end = round_down(file_offset + len, fs_info->sectorsize); u64 next_offset; u64 cur = aligned_start; int ret = 0; btrfs_init_path(&path); /* Set the whole dest all zero, so we won't need to bother holes */ memset(dest, 0, len); /* Read out the leading unaligned part */ if (aligned_start != file_offset) { ret = lookup_data_extent(root, &path, ino, aligned_start, &next_offset); if (ret < 0) goto out; if (ret == 0) { /* Read the unaligned part out*/ fi = btrfs_item_ptr(path.nodes[0], path.slots[0], struct btrfs_file_extent_item); ret = read_and_truncate_page(&path, fi, file_offset, round_up(file_offset, fs_info->sectorsize) - file_offset, dest); if (ret < 0) goto out; cur += fs_info->sectorsize; } else { /* The whole file is a hole */ if (!next_offset) { memset(dest, 0, len); return len; } cur = next_offset; } } /* Read the aligned part */ while (cur < aligned_end) { u64 extent_num_bytes; u8 type; btrfs_release_path(&path); ret = lookup_data_extent(root, &path, ino, cur, &next_offset); if (ret < 0) goto out; if (ret > 0) { /* No next, direct exit */ if (!next_offset) { ret = 0; goto out; } /* * Find a extent gap, mostly caused by NO_HOLE feature. * Just to next offset directly. */ if (next_offset > cur) { cur = next_offset; continue; } } fi = btrfs_item_ptr(path.nodes[0], path.slots[0], struct btrfs_file_extent_item); btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); type = btrfs_file_extent_type(path.nodes[0], fi); if (type == BTRFS_FILE_EXTENT_INLINE) { ret = btrfs_read_extent_inline(&path, fi, dest); goto out; } /* Skip holes, as we have zeroed the dest */ if (type == BTRFS_FILE_EXTENT_PREALLOC || btrfs_file_extent_disk_bytenr(path.nodes[0], fi) == 0) { cur = key.offset + btrfs_file_extent_num_bytes( path.nodes[0], fi); continue; } /* Read the remaining part of the extent */ extent_num_bytes = btrfs_file_extent_num_bytes(path.nodes[0], fi); ret = btrfs_read_extent_reg(&path, fi, cur, min(extent_num_bytes, aligned_end - cur), dest + cur - file_offset); if (ret < 0) goto out; cur += min(extent_num_bytes, aligned_end - cur); } /* Read the tailing unaligned part*/ if (file_offset + len != aligned_end) { btrfs_release_path(&path); ret = lookup_data_extent(root, &path, ino, aligned_end, &next_offset); /* <0 is error, >0 means no extent */ if (ret) goto out; fi = btrfs_item_ptr(path.nodes[0], path.slots[0], struct btrfs_file_extent_item); ret = read_and_truncate_page(&path, fi, aligned_end, file_offset + len - aligned_end, dest + aligned_end - file_offset); } out: btrfs_release_path(&path); if (ret < 0) return ret; return len; }