1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
|
/*
* arch/arm/cpu/armv8/common/firmware/plat/gxb/sha2.c
*
* Copyright (C) 2015 Amlogic, Inc. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <stdio.h>
#include <asm/arch/romboot.h>
#include <string.h>
#include <io.h>
#include <platform_def.h>
#include <sha2.h>
#include <asm/arch/secure_apb.h>
#include <ndma_utils.h>
#define CONFIG_AML_SHA2_HW_DMA
static sha2_ctx *cur_ctx;
static void hw_init(uint32_t is224)
{
uint32_t i, tmp;
uint32_t state[10];
if (is224 == 0) {
/* SHA-256 */
state[7] = 0x6A09E667;
state[6] = 0xBB67AE85;
state[5] = 0x3C6EF372;
state[4] = 0xA54FF53A;
state[3] = 0x510E527F;
state[2] = 0x9B05688C;
state[1] = 0x1F83D9AB;
state[0] = 0x5BE0CD19;
}
else {
/* SHA-224 */
state[7] = 0xC1059ED8;
state[6] = 0x367CD507;
state[5] = 0x3070DD17;
state[4] = 0xF70E5939;
state[3] = 0xFFC00B31;
state[2] = 0x68581511;
state[1] = 0x64F98FA7;
state[0] = 0xBEFA4FA4;
}
state[8] = 0;
state[9] = 0;
tmp = readl(SEC_SEC_BLKMV_GEN_REG0);
tmp &= ~((3 << 12) | (0xf << 8) | (0xf << 4));
tmp |= (1 << 12) | (0xa << 8) | (4 << 4);
writel(tmp, (int *)SEC_SEC_BLKMV_GEN_REG0);
writel((0 << 21) | // last wdata
(0 << 20) | // last block
(3 << 18) | // byte transfer count
((is224 ? 3 : 2) << 16) | // SHA mode
(0 << 12) | // out endian
(0 << 8) | // in endian
(0 << 4) | //
(0 << 4) | //
(1 << 3) | // enable
(0 << 2) | //
(0 << 1) | //
(1 << 0), // enable SHA PIO data engine
SEC_SEC_BLKMV_SHA_CONTROL);
// sha=5
writel((1 << 4) | 5, SEC_SEC_BLKMV_PIO_CNTL0);
while (((readl(SEC_SEC_BLKMV_PIO_CNTL0) >> 31) & 1) == 0)
;
// initial
for (i = 0; i < 10; i++)
writel(state[i], (long)(SEC_SEC_BLKMV_PIO_DATA0 + i * 4));
}
static void hw_update(const uint8_t *input, uint32_t ilen, uint8_t last_update)
{
uint32_t bytes, left, tmp;
uint32_t *p;
if (!last_update && (ilen % 64)) {
serial_puts("Err:sha\n");
// sha2 usage problem
return;
}
// block
p = (uint32_t *)input;
while (ilen > 0) {
if (ilen >= 64) {
bytes = 64;
ilen -= 64;
}
else {
bytes = ilen;
ilen = 0;
}
while (bytes > 0) {
if (bytes >= 4) {
left = 4;
bytes -= 4;
}
else {
left = bytes;
bytes = 0;
}
if (left < 4) { // last write, last block
tmp = readl(SEC_SEC_BLKMV_SHA_CONTROL);
tmp &= ~(0xf << 18);
tmp |= ((left - 1) << 18) | (3 << 20);
writel(tmp, SEC_SEC_BLKMV_SHA_CONTROL);
}
else if (bytes == 0) { // last write,
tmp = readl(SEC_SEC_BLKMV_SHA_CONTROL);
tmp &= ~(3 << 20);
tmp |= (1 << 21);
if (last_update && ilen == 0)
tmp |= (1 << 20); // last block
writel(tmp, SEC_SEC_BLKMV_SHA_CONTROL);
}
writel(*p++, SEC_SEC_BLKMV_SHA_PIO_WDATA);
if (bytes == 0) {
while ((readl(SEC_SEC_BLKMV_SHA_CONTROL) >> 31) & 1)
;
tmp = readl(SEC_SEC_BLKMV_SHA_CONTROL);
tmp &= ~(3 << 20);
tmp |= (1 << 22);
writel(tmp, SEC_SEC_BLKMV_SHA_CONTROL);
}
}
}
}
static void hw_final(uint8_t output[32])
{
uint32_t *p;
uint32_t i;
setbits_le32(SEC_SEC_BLKMV_PIO_CNTL0, 1 << 6);
clrbits_le32(SEC_SEC_BLKMV_PIO_CNTL0, 1 << 6);
for (p = (uint32_t *)(output), i = 0; i < 8; i++)
*p++ = readl((long)(SEC_SEC_BLKMV_PIO_DATA0 + i * 4));
}
/**
* SHA-2 Family Hash Init
*
* @param ctx context
* @param digest_len digest length in bits (224 or 256)
*/
void SHA2_HW_init(sha2_ctx *ctx, uint32_t digest_len)
{
if (cur_ctx != NULL) {
serial_puts("Err:sha\n");
// sha2 usage problem
return;
}
cur_ctx = ctx;
hw_init(digest_len == 224);
ctx->len = 0;
}
/**
* SHA-2 Family Hash Update
*/
void SHA2_HW_update(sha2_ctx *ctx, const uint8_t *data, uint32_t len)
{
unsigned int fill_len, data_len, rem_len,offset;
if (cur_ctx != ctx) {
serial_puts("Err:sha\n");
// sha2 usage problem
return;
}
/* This method updates the hash for the input data in blocks, except the last
* partial|full block, which is saved in ctx->block. The last partial|full
* block will be added to the hash in SHA2_final.
*/
data_len = len;
offset = 0;
/* fill saved block from beginning of input data */
if (ctx->len) {
fill_len = SHA256_BLOCK_SIZE - ctx->len;
memcpy(&ctx->block[ctx->len], data, fill_len);
data_len -= fill_len;
offset = fill_len;
ctx->len += fill_len;
}
if (ctx->len == SHA256_BLOCK_SIZE && data_len > 0) {
/* saved block is full and is not last block, hash it */
hw_update(ctx->block, SHA256_BLOCK_SIZE, 0);
ctx->len = 0;
}
if (data_len > SHA256_BLOCK_SIZE) {
/* still have more than 1 block. hash up until last [partial|full] block */
rem_len = data_len % SHA256_BLOCK_SIZE;
if (rem_len == 0) {
rem_len = SHA256_BLOCK_SIZE;
}
data_len -= rem_len;
hw_update(&data[offset], data_len, 0);
offset += data_len;
} else {
rem_len = data_len;
}
if (rem_len) {
/* save the remaining data */
memcpy(ctx->block, &data[offset], rem_len);
ctx->len = rem_len;
}
}
/**
* SHA-2 Family Hash Update
*
* Returns pointer to ctx->buf containing hash.
*/
uint8_t *SHA2_HW_final(sha2_ctx *ctx)
{
if (cur_ctx != ctx) {
serial_puts("Err:sha\n");
// sha2 usage problem
return ctx->buf;
}
if (ctx->len == 0 || ctx->len > SHA256_BLOCK_SIZE) {
serial_puts("Err:sha\n");
// internal sha2 problem
return ctx->buf;
}
hw_update(ctx->block, ctx->len, 1);
hw_final(ctx->buf);
cur_ctx = NULL;
return ctx->buf;
}
#if defined(CONFIG_AML_SHA2_HW_DMA)
#define THREAD1_TABLE_LOC 0x5510000
#define SHA_Wr(addr, data) *(volatile uint32_t *)(addr)=(data)
#define SHA_Rd(addr) *(volatile uint32_t *)(addr)
#define SEC_ALLOWED_MASK 0xa // thread 3 and thread 1 are allowed non-secure
int g_n_sha_Start_flag = 0;
int g_n_sha_thread_num = 0;
#endif
void SHA2_init(sha2_ctx *ctx, unsigned int digest_len)
{
#if defined(CONFIG_AML_SHA2_HW_DMA)
unsigned int sha2_256_msg_in[8] = {
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19};
g_n_sha_thread_num = 0; //fixed SHA2 with thread 0
// Setup secure and non-secure transfers
// Also set up the general readback of crypto outputs to the SHA engine
// assign sec_allowed_mask = sec_gen_reg0[11:8];
// wire [1:0] sec_read_sel = sec_gen_reg0[13:12];
SHA_Wr(SEC_SEC_BLKMV_GEN_REG0, ((SHA_Rd(SEC_SEC_BLKMV_GEN_REG0) & ~((0x3 << 12) | (0xf << 8))) | (1 << 12) | (SEC_ALLOWED_MASK << 8)) );
// Allow secure DDR tranfers for the Secure domains
// wire [3:0] sec_ddr_sec_id_en = sec_gen_reg0[7:4]; // Even though a thread is secure, we may not want it to use the DDR secure ID (just in case);
SHA_Wr(SEC_SEC_BLKMV_GEN_REG0, ((SHA_Rd(SEC_SEC_BLKMV_GEN_REG0) & ~(0xf << 4)) | (0x4 << 4)) ); // only thread 2 can issue Secure transfers
// Enable the SHA engine
// wire sec_sha_dma_enable = sec_sha_control[3];
SHA_Wr( SEC_SEC_BLKMV_SHA_CONTROL, SHA_Rd(SEC_SEC_BLKMV_SHA_CONTROL) | (1 << 3) );
// For DMA modes, pretend there is a PIO request for the AES (not SHA)
// reg pio_granted; // pio_control[31];
// wire pio_hold_all = pio_control[5]; // set to 1 to block all in-line processing regardless of the PIO being used
// wire pio_request = pio_control[4];
// wire [2:0] pio_inline_type = pio_control[2:0];
SHA_Wr( SEC_SEC_BLKMV_PIO_CNTL0, (SHA_Rd(SEC_SEC_BLKMV_PIO_CNTL0) & ~((1 << 4) | (0x7 << 0))) | ((1 << 4) | (4 << 0)) ); // Request for AES
//
// Write the initial message and datatlen
//
// initial the internal CPU fifo write counter for the save/restore engine
// wire sec_sha_cpu_save_init = sec_sha_control[6]; // Pulsed
// wire [1:0] sec_sha_thread = sec_sha_control[5:4];
SHA_Wr( SEC_SEC_BLKMV_SHA_CONTROL, (SHA_Rd(SEC_SEC_BLKMV_SHA_CONTROL) & ~(3 << 4)) | (1 << 6) | (g_n_sha_thread_num << 4) ); // pulse bit (init cpu counters)
SHA_Wr( SEC_SEC_BLKMV_SHA_DMA_MSG_IN, sha2_256_msg_in[7] );
SHA_Wr( SEC_SEC_BLKMV_SHA_DMA_MSG_IN, sha2_256_msg_in[6] );
SHA_Wr( SEC_SEC_BLKMV_SHA_DMA_MSG_IN, sha2_256_msg_in[5] );
SHA_Wr( SEC_SEC_BLKMV_SHA_DMA_MSG_IN, sha2_256_msg_in[4] );
SHA_Wr( SEC_SEC_BLKMV_SHA_DMA_MSG_IN, sha2_256_msg_in[3] );
SHA_Wr( SEC_SEC_BLKMV_SHA_DMA_MSG_IN, sha2_256_msg_in[2] );
SHA_Wr( SEC_SEC_BLKMV_SHA_DMA_MSG_IN, sha2_256_msg_in[1] );
SHA_Wr( SEC_SEC_BLKMV_SHA_DMA_MSG_IN, sha2_256_msg_in[0] );
SHA_Wr( SEC_SEC_BLKMV_SHA_DMA_DATALEN_IN, 0 );
SHA_Wr( SEC_SEC_BLKMV_SHA_DMA_DATALEN_IN, 0 );
memset((void*)THREAD1_TABLE_LOC,0,10*32);
NDMA_set_table_position_secure( g_n_sha_thread_num, THREAD1_TABLE_LOC, THREAD1_TABLE_LOC + (10*32) ); // 2 thread entries
g_n_sha_Start_flag = 0;
#else
SHA2_HW_init(ctx, digest_len);
#endif
}
void SHA2_update(sha2_ctx *ctx, const unsigned char *data, unsigned int len)
{
#if defined(CONFIG_AML_SHA2_HW_DMA)
if (!len)
return;
NDMA_add_descriptor_sha( g_n_sha_thread_num, // uint32_t thread_num,
1, // uint32_t irq,
2, // uint32_t sha_mode, // 1:sha1;2:sha2-256;3:sha2_224
0, // uint32_t pre_endian,
len, // uint32_t bytes_to_move,
(uint32_t)(unsigned long)data, // uint32_t src_addr,
0 ); // uint32_t last_block,
if (!g_n_sha_Start_flag)
{
NDMA_start(g_n_sha_thread_num);
g_n_sha_Start_flag = 1;
}
#else
SHA2_HW_update(ctx, data, len);
#endif
}
void SHA2_final(sha2_ctx *ctx,const unsigned char *data, unsigned int len)
{
#if defined(CONFIG_AML_SHA2_HW_DMA)
unsigned int *pOUT = (unsigned int *)(unsigned char *)ctx->buf;
NDMA_add_descriptor_sha( g_n_sha_thread_num, // uint32_t thread_num,
1, // uint32_t irq,
2, // uint32_t sha_mode, // 1:sha1;2:sha2-256;3:sha2_224
0, // uint32_t pre_endian,
len, // uint32_t bytes_to_move,
(uint32_t)(unsigned long)data, // uint32_t src_addr,
1 ); // uint32_t last_block,
if (!g_n_sha_Start_flag)
{
NDMA_start(g_n_sha_thread_num);
g_n_sha_Start_flag = 1;
}
NDMA_wait_for_completion(g_n_sha_thread_num);
NDMA_stop(g_n_sha_thread_num);
g_n_sha_Start_flag = 0;
pOUT[0] = SHA_Rd(SEC_SEC_BLKMV_PIO_DATA0);
pOUT[1] = SHA_Rd(SEC_SEC_BLKMV_PIO_DATA1);
pOUT[2] = SHA_Rd(SEC_SEC_BLKMV_PIO_DATA2);
pOUT[3] = SHA_Rd(SEC_SEC_BLKMV_PIO_DATA3);
pOUT[4] = SHA_Rd(SEC_SEC_BLKMV_PIO_DATA4);
pOUT[5] = SHA_Rd(SEC_SEC_BLKMV_PIO_DATA5);
pOUT[6] = SHA_Rd(SEC_SEC_BLKMV_PIO_DATA6);
pOUT[7] = SHA_Rd(SEC_SEC_BLKMV_PIO_DATA7);
#else
SHA2_HW_update(ctx, data, len);
SHA2_HW_final(ctx);
#endif
}
void sha2(const uint8_t *input, unsigned int ilen, unsigned char output[32], unsigned int is224)
{
sha2_ctx sha_ctx;
unsigned long nSRCAddr = (unsigned long)input;
if (((nSRCAddr >> 24) & (0xFF)) == 0xD9)
{
//serial_puts("aml log : PIO SHA\n");
SHA2_HW_init(&sha_ctx, is224 ? 224: 256);
SHA2_HW_update(&sha_ctx, input, ilen);
SHA2_HW_final(&sha_ctx);
}
else
{
//serial_puts("aml log : DMA SHA\n");
SHA2_init( &sha_ctx, is224 ? 224: 256);
SHA2_final( &sha_ctx, input,ilen);
}
memcpy(output,sha_ctx.buf,32);
}
|