~funderscore blog cgit wiki get in touch
aboutsummaryrefslogtreecommitdiff
blob: 783b660eefe4a46cca124d0cb92e17ed67da353c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
/*
 * Copyright (c) 2018-2023, ARM Limited and Contributors. All rights reserved.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

/* Helper functions to offer easier navigation of Device Tree Blob */

#include <assert.h>
#include <errno.h>
#include <inttypes.h>
#include <stdint.h>
#include <string.h>

#include <libfdt.h>

#include <common/debug.h>
#include <common/fdt_wrappers.h>
#include <common/uuid.h>

/*
 * Read cells from a given property of the given node. Any number of 32-bit
 * cells of the property can be read. Returns 0 on success, or a negative
 * FDT error value otherwise.
 */
int fdt_read_uint32_array(const void *dtb, int node, const char *prop_name,
			  unsigned int cells, uint32_t *value)
{
	const fdt32_t *prop;
	int value_len;

	assert(dtb != NULL);
	assert(prop_name != NULL);
	assert(value != NULL);
	assert(node >= 0);

	/* Access property and obtain its length (in bytes) */
	prop = fdt_getprop(dtb, node, prop_name, &value_len);
	if (prop == NULL) {
		VERBOSE("Couldn't find property %s in dtb\n", prop_name);
		return -FDT_ERR_NOTFOUND;
	}

	/* Verify that property length can fill the entire array. */
	if (NCELLS((unsigned int)value_len) < cells) {
		WARN("Property length mismatch\n");
		return -FDT_ERR_BADVALUE;
	}

	for (unsigned int i = 0U; i < cells; i++) {
		value[i] = fdt32_to_cpu(prop[i]);
	}

	return 0;
}

int fdt_read_uint32(const void *dtb, int node, const char *prop_name,
		    uint32_t *value)
{
	return fdt_read_uint32_array(dtb, node, prop_name, 1, value);
}

uint32_t fdt_read_uint32_default(const void *dtb, int node,
				 const char *prop_name, uint32_t dflt_value)
{
	uint32_t ret = dflt_value;
	int err = fdt_read_uint32(dtb, node, prop_name, &ret);

	if (err < 0) {
		return dflt_value;
	}

	return ret;
}

int fdt_read_uint64(const void *dtb, int node, const char *prop_name,
		    uint64_t *value)
{
	uint32_t array[2] = {0, 0};
	int ret;

	ret = fdt_read_uint32_array(dtb, node, prop_name, 2, array);
	if (ret < 0) {
		return ret;
	}

	*value = ((uint64_t)array[0] << 32) | array[1];
	return 0;
}

/*
 * Read bytes from a given property of the given node. Any number of
 * bytes of the property can be read. The fdt pointer is updated.
 * Returns 0 on success, and -1 on error.
 */
int fdtw_read_bytes(const void *dtb, int node, const char *prop,
		    unsigned int length, void *value)
{
	const void *ptr;
	int value_len;

	assert(dtb != NULL);
	assert(prop != NULL);
	assert(value != NULL);
	assert(node >= 0);

	/* Access property and obtain its length (in bytes) */
	ptr = fdt_getprop_namelen(dtb, node, prop, (int)strlen(prop),
					&value_len);
	if (ptr == NULL) {
		WARN("Couldn't find property %s in dtb\n", prop);
		return -1;
	}

	/* Verify that property length is not less than number of bytes */
	if ((unsigned int)value_len < length) {
		WARN("Property length mismatch\n");
		return -1;
	}

	(void)memcpy(value, ptr, length);

	return 0;
}

/*
 * Read string from a given property of the given node. Up to 'size - 1'
 * characters are read, and a NUL terminator is added. Returns 0 on success,
 * and -1 upon error.
 */
int fdtw_read_string(const void *dtb, int node, const char *prop,
		char *str, size_t size)
{
	const char *ptr;
	size_t len;

	assert(dtb != NULL);
	assert(node >= 0);
	assert(prop != NULL);
	assert(str != NULL);
	assert(size > 0U);

	ptr = fdt_getprop_namelen(dtb, node, prop, (int)strlen(prop), NULL);
	if (ptr == NULL) {
		WARN("Couldn't find property %s in dtb\n", prop);
		return -1;
	}

	len = strlcpy(str, ptr, size);
	if (len >= size) {
		WARN("String of property %s in dtb has been truncated\n", prop);
		return -1;
	}

	return 0;
}

/*
 * Read UUID from a given property of the given node. Returns 0 on success,
 * and a negative value upon error.
 */
int fdtw_read_uuid(const void *dtb, int node, const char *prop,
		   unsigned int length, uint8_t *uuid)
{
	/* Buffer for UUID string (plus NUL terminator) */
	char uuid_string[UUID_STRING_LENGTH + 1U];
	int err;

	assert(dtb != NULL);
	assert(prop != NULL);
	assert(uuid != NULL);
	assert(node >= 0);

	if (length < UUID_BYTES_LENGTH) {
		return -EINVAL;
	}

	err = fdtw_read_string(dtb, node, prop, uuid_string,
			       UUID_STRING_LENGTH + 1U);
	if (err != 0) {
		return err;
	}

	if (read_uuid(uuid, uuid_string) != 0) {
		return -FDT_ERR_BADVALUE;
	}

	return 0;
}

/*
 * Write cells in place to a given property of the given node. At most 2 cells
 * of the property are written. Returns 0 on success, and -1 upon error.
 */
int fdtw_write_inplace_cells(void *dtb, int node, const char *prop,
		unsigned int cells, void *value)
{
	int err, len;

	assert(dtb != NULL);
	assert(prop != NULL);
	assert(value != NULL);
	assert(node >= 0);

	/* We expect either 1 or 2 cell property */
	assert(cells <= 2U);

	if (cells == 2U)
		*(fdt64_t *)value = cpu_to_fdt64(*(uint64_t *)value);
	else
		*(fdt32_t *)value = cpu_to_fdt32(*(uint32_t *)value);

	len = (int)cells * 4;

	/* Set property value in place */
	err = fdt_setprop_inplace(dtb, node, prop, value, len);
	if (err != 0) {
		WARN("Modify property %s failed with error %d\n", prop, err);
		return -1;
	}

	return 0;
}

/*
 * Write bytes in place to a given property of the given node.
 * Any number of bytes of the property can be written.
 * Returns 0 on success, and < 0 on error.
 */
int fdtw_write_inplace_bytes(void *dtb, int node, const char *prop,
			     unsigned int length, const void *data)
{
	const void *ptr;
	int namelen, value_len, err;

	assert(dtb != NULL);
	assert(prop != NULL);
	assert(data != NULL);
	assert(node >= 0);

	namelen = (int)strlen(prop);

	/* Access property and obtain its length in bytes */
	ptr = fdt_getprop_namelen(dtb, node, prop, namelen, &value_len);
	if (ptr == NULL) {
		WARN("Couldn't find property %s in dtb\n", prop);
		return -1;
	}

	/* Verify that property length is not less than number of bytes */
	if ((unsigned int)value_len < length) {
		WARN("Property length mismatch\n");
		return -1;
	}

	/* Set property value in place */
	err = fdt_setprop_inplace_namelen_partial(dtb, node, prop,
						  namelen, 0,
						  data, (int)length);
	if (err != 0) {
		WARN("Set property %s failed with error %d\n", prop, err);
	}

	return err;
}

static uint64_t fdt_read_prop_cells(const fdt32_t *prop, int nr_cells)
{
	uint64_t reg = fdt32_to_cpu(prop[0]);

	if (nr_cells > 1) {
		reg = (reg << 32) | fdt32_to_cpu(prop[1]);
	}

	return reg;
}

int fdt_get_reg_props_by_index(const void *dtb, int node, int index,
			       uintptr_t *base, size_t *size)
{
	const fdt32_t *prop;
	int parent, len;
	int ac, sc;
	int cell;

	parent = fdt_parent_offset(dtb, node);
	if (parent < 0) {
		return -FDT_ERR_BADOFFSET;
	}

	ac = fdt_address_cells(dtb, parent);
	sc = fdt_size_cells(dtb, parent);

	cell = index * (ac + sc);

	prop = fdt_getprop(dtb, node, "reg", &len);
	if (prop == NULL) {
		WARN("Couldn't find \"reg\" property in dtb\n");
		return -FDT_ERR_NOTFOUND;
	}

	if (((cell + ac + sc) * (int)sizeof(uint32_t)) > len) {
		return -FDT_ERR_BADVALUE;
	}

	if (base != NULL) {
		*base = (uintptr_t)fdt_read_prop_cells(&prop[cell], ac);
	}

	if (size != NULL) {
		*size = (size_t)fdt_read_prop_cells(&prop[cell + ac], sc);
	}

	return 0;
}

/*******************************************************************************
 * This function fills reg node info (base & size) with an index found by
 * checking the reg-names node.
 * Returns 0 on success and a negative FDT error code on failure.
 ******************************************************************************/
int fdt_get_reg_props_by_name(const void *dtb, int node, const char *name,
			      uintptr_t *base, size_t *size)
{
	int index;

	index = fdt_stringlist_search(dtb, node, "reg-names", name);
	if (index < 0) {
		return index;
	}

	return fdt_get_reg_props_by_index(dtb, node, index, base, size);
}

/*******************************************************************************
 * This function gets the stdout path node.
 * It reads the value indicated inside the device tree.
 * Returns node offset on success and a negative FDT error code on failure.
 ******************************************************************************/
int fdt_get_stdout_node_offset(const void *dtb)
{
	int node;
	const char *prop, *path;
	int len;

	/* The /secure-chosen node takes precedence over the standard one. */
	node = fdt_path_offset(dtb, "/secure-chosen");
	if (node < 0) {
		node = fdt_path_offset(dtb, "/chosen");
		if (node < 0) {
			return -FDT_ERR_NOTFOUND;
		}
	}

	prop = fdt_getprop(dtb, node, "stdout-path", NULL);
	if (prop == NULL) {
		return -FDT_ERR_NOTFOUND;
	}

	/* Determine the actual path length, as a colon terminates the path. */
	path = strchr(prop, ':');
	if (path == NULL) {
		len = strlen(prop);
	} else {
		len = path - prop;
	}

	/* Aliases cannot start with a '/', so it must be the actual path. */
	if (prop[0] == '/') {
		return fdt_path_offset_namelen(dtb, prop, len);
	}

	/* Lookup the alias, as this contains the actual path. */
	path = fdt_get_alias_namelen(dtb, prop, len);
	if (path == NULL) {
		return -FDT_ERR_NOTFOUND;
	}

	return fdt_path_offset(dtb, path);
}


/*******************************************************************************
 * Only devices which are direct children of root node use CPU address domain.
 * All other devices use addresses that are local to the device node and cannot
 * directly used by CPU. Device tree provides an address translation mechanism
 * through "ranges" property which provides mappings from local address space to
 * parent address space. Since a device could be a child of a child node to the
 * root node, there can be more than one level of address translation needed to
 * map the device local address space to CPU address space.
 * fdtw_translate_address() API performs address translation of a local address
 * to a global address with help of various helper functions.
 ******************************************************************************/

static bool fdtw_xlat_hit(const fdt32_t *value, int child_addr_size,
		int parent_addr_size, int range_size, uint64_t base_address,
		uint64_t *translated_addr)
{
	uint64_t local_address, parent_address, addr_range;

	local_address = fdt_read_prop_cells(value, child_addr_size);
	parent_address = fdt_read_prop_cells(value + child_addr_size,
				parent_addr_size);
	addr_range = fdt_read_prop_cells(value + child_addr_size +
				parent_addr_size,
				range_size);
	VERBOSE("DT: Address %" PRIx64 " mapped to %" PRIx64 " with range %" PRIx64 "\n",
		local_address, parent_address, addr_range);

	/* Perform range check */
	if ((base_address < local_address) ||
		(base_address >= local_address + addr_range)) {
		return false;
	}

	/* Found hit for the addr range that needs to be translated */
	*translated_addr = parent_address + (base_address - local_address);
	VERBOSE("DT: child address %" PRIx64 "mapped to %" PRIx64 " in parent bus\n",
		local_address, parent_address);
	return true;
}

#define ILLEGAL_ADDR	ULL(~0)

static uint64_t fdtw_search_all_xlat_entries(const void *dtb,
				const struct fdt_property *ranges_prop,
				int local_bus, uint64_t base_address)
{
	uint64_t translated_addr;
	const fdt32_t *next_entry;
	int parent_bus_node, nxlat_entries, length;
	int self_addr_cells, parent_addr_cells, self_size_cells, ncells_xlat;

	/*
	 * The number of cells in one translation entry in ranges is the sum of
	 * the following values:
	 * self#address-cells + parent#address-cells + self#size-cells
	 * Ex: the iofpga ranges property has one translation entry with 4 cells
	 * They represent iofpga#addr-cells + motherboard#addr-cells + iofpga#size-cells
	 *              = 1                 + 2                      + 1
	 */

	parent_bus_node = fdt_parent_offset(dtb, local_bus);
	self_addr_cells = fdt_address_cells(dtb, local_bus);
	self_size_cells = fdt_size_cells(dtb, local_bus);
	parent_addr_cells = fdt_address_cells(dtb, parent_bus_node);

	/* Number of cells per translation entry i.e., mapping */
	ncells_xlat = self_addr_cells + parent_addr_cells + self_size_cells;

	assert(ncells_xlat > 0);

	/*
	 * Find the number of translations(mappings) specified in the current
	 * `ranges` property. Note that length represents number of bytes and
	 * is stored in big endian mode.
	 */
	length = fdt32_to_cpu(ranges_prop->len);
	nxlat_entries = (length/sizeof(uint32_t))/ncells_xlat;

	assert(nxlat_entries > 0);

	next_entry = (const fdt32_t *)ranges_prop->data;

	/* Iterate over the entries in the "ranges" */
	for (int i = 0; i < nxlat_entries; i++) {
		if (fdtw_xlat_hit(next_entry, self_addr_cells,
				parent_addr_cells, self_size_cells, base_address,
				&translated_addr)){
			return translated_addr;
		}
		next_entry = next_entry + ncells_xlat;
	}

	INFO("DT: No translation found for address %" PRIx64 " in node %s\n",
	     base_address, fdt_get_name(dtb, local_bus, NULL));
	return ILLEGAL_ADDR;
}


/*******************************************************************************
 * address mapping needs to be done recursively starting from current node to
 * root node through all intermediate parent nodes.
 * Sample device tree is shown here:

smb@0,0 {
	compatible = "simple-bus";

	#address-cells = <2>;
	#size-cells = <1>;
	ranges = <0 0 0 0x08000000 0x04000000>,
		 <1 0 0 0x14000000 0x04000000>,
		 <2 0 0 0x18000000 0x04000000>,
		 <3 0 0 0x1c000000 0x04000000>,
		 <4 0 0 0x0c000000 0x04000000>,
		 <5 0 0 0x10000000 0x04000000>;

	motherboard {
		arm,v2m-memory-map = "rs1";
		compatible = "arm,vexpress,v2m-p1", "simple-bus";
		#address-cells = <2>;
		#size-cells = <1>;
		ranges;

		iofpga@3,00000000 {
			compatible = "arm,amba-bus", "simple-bus";
			#address-cells = <1>;
			#size-cells = <1>;
			ranges = <0 3 0 0x200000>;
			v2m_serial1: uart@a0000 {
				compatible = "arm,pl011", "arm,primecell";
				reg = <0x0a0000 0x1000>;
				interrupts = <0 6 4>;
				clocks = <&v2m_clk24mhz>, <&v2m_clk24mhz>;
				clock-names = "uartclk", "apb_pclk";
		};
	};
};

 * As seen above, there are 3 levels of address translations needed. An empty
 * `ranges` property denotes identity mapping (as seen in `motherboard` node).
 * Each ranges property can map a set of child addresses to parent bus. Hence
 * there can be more than 1 (translation) entry in the ranges property as seen
 * in the `smb` node which has 6 translation entries.
 ******************************************************************************/

/* Recursive implementation */
uint64_t fdtw_translate_address(const void *dtb, int node,
				uint64_t base_address)
{
	int length, local_bus_node;
	const char *node_name;
	uint64_t global_address;

	local_bus_node = fdt_parent_offset(dtb, node);
	node_name = fdt_get_name(dtb, local_bus_node, NULL);

	/*
	 * In the example given above, starting from the leaf node:
	 * uart@a000 represents the current node
	 * iofpga@3,00000000 represents the local bus
	 * motherboard represents the parent bus
	 */

	/* Read the ranges property */
	const struct fdt_property *property = fdt_get_property(dtb,
					local_bus_node, "ranges", &length);

	if (property == NULL) {
		if (local_bus_node == 0) {
			/*
			 * root node doesn't have range property as addresses
			 * are in CPU address space.
			 */
			return base_address;
		}
		INFO("DT: Couldn't find ranges property in node %s\n",
			node_name);
		return ILLEGAL_ADDR;
	} else if (length == 0) {
		/* empty ranges indicates identity map to parent bus */
		return fdtw_translate_address(dtb, local_bus_node, base_address);
	}

	VERBOSE("DT: Translation lookup in node %s at offset %d\n", node_name,
		local_bus_node);
	global_address = fdtw_search_all_xlat_entries(dtb, property,
				local_bus_node, base_address);

	if (global_address == ILLEGAL_ADDR) {
		return ILLEGAL_ADDR;
	}

	/* Translate the local device address recursively */
	return fdtw_translate_address(dtb, local_bus_node, global_address);
}

/*
 * For every CPU node (`/cpus/cpu@n`) in an FDT, execute a callback passing a
 * pointer to the FDT and the offset of the CPU node. If the return value of the
 * callback is negative, it is treated as an error and the loop is aborted. In
 * this situation, the value of the callback is returned from the function.
 *
 * Returns `0` on success, or a negative integer representing an error code.
 */
int fdtw_for_each_cpu(const void *dtb,
		      int (*callback)(const void *dtb, int node, uintptr_t mpidr))
{
	int ret = 0;
	int parent, node = 0;

	parent = fdt_path_offset(dtb, "/cpus");
	if (parent < 0) {
		return parent;
	}

	fdt_for_each_subnode(node, dtb, parent) {
		const char *name;
		int len;

		uintptr_t mpidr = 0U;

		name = fdt_get_name(dtb, node, &len);
		if (strncmp(name, "cpu@", 4) != 0) {
			continue;
		}

		ret = fdt_get_reg_props_by_index(dtb, node, 0, &mpidr, NULL);
		if (ret < 0) {
			break;
		}

		ret = callback(dtb, node, mpidr);
		if (ret < 0) {
			break;
		}
	}

	return ret;
}

/*
 * Find a given node in device tree. If not present, add it.
 * Returns offset of node found/added on success, and < 0 on error.
 */
int fdtw_find_or_add_subnode(void *fdt, int parentoffset, const char *name)
{
	int offset;

	offset = fdt_subnode_offset(fdt, parentoffset, name);

	if (offset == -FDT_ERR_NOTFOUND) {
		offset = fdt_add_subnode(fdt, parentoffset, name);
	}

	if (offset < 0) {
		ERROR("%s: %s: %s\n", __func__, name, fdt_strerror(offset));
	}

	return offset;
}