1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
|
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (C) 2020 Marvell International Ltd.
*/
/**
* @file
* Simple allocate only memory allocator. Used to allocate memory at application
* start time.
*/
#ifndef __CVMX_BOOTMEM_H__
#define __CVMX_BOOTMEM_H__
/* Must be multiple of 8, changing breaks ABI */
#define CVMX_BOOTMEM_NAME_LEN 128
/* Can change without breaking ABI */
#define CVMX_BOOTMEM_NUM_NAMED_BLOCKS 64
/* minimum alignment of bootmem alloced blocks */
#define CVMX_BOOTMEM_ALIGNMENT_SIZE (16ull)
/* Flags for cvmx_bootmem_phy_mem* functions */
/* Allocate from end of block instead of beginning */
#define CVMX_BOOTMEM_FLAG_END_ALLOC (1 << 0)
#define CVMX_BOOTMEM_FLAG_NO_LOCKING (1 << 1) /* Don't do any locking. */
/* Real physical addresses of memory regions */
#define OCTEON_DDR0_BASE (0x0ULL)
/* Use 16MiB here, as 256 leads to overwriting U-Boot reloc space */
#define OCTEON_DDR0_SIZE (0x001000000ULL)
#define OCTEON_DDR1_BASE ((OCTEON_IS_OCTEON2() || OCTEON_IS_OCTEON3()) \
? 0x20000000ULL : 0x410000000ULL)
#define OCTEON_DDR1_SIZE (0x010000000ULL)
#define OCTEON_DDR2_BASE ((OCTEON_IS_OCTEON2() || OCTEON_IS_OCTEON3()) \
? 0x30000000ULL : 0x20000000ULL)
#define OCTEON_DDR2_SIZE ((OCTEON_IS_OCTEON2() || OCTEON_IS_OCTEON3()) \
? 0x7d0000000ULL : 0x3e0000000ULL)
#define OCTEON_MAX_PHY_MEM_SIZE ((OCTEON_IS_MODEL(OCTEON_CN68XX)) \
? 128 * 1024 * 1024 * 1024ULL \
: (OCTEON_IS_OCTEON2()) \
? 32 * 1024 * 1024 * 1024ull \
: (OCTEON_IS_OCTEON3()) \
? 512 * 1024 * 1024 * 1024ULL \
: 16 * 1024 * 1024 * 1024ULL)
/*
* First bytes of each free physical block of memory contain this structure,
* which is used to maintain the free memory list. Since the bootloader is
* only 32 bits, there is a union providing 64 and 32 bit versions. The
* application init code converts addresses to 64 bit addresses before the
* application starts.
*/
struct cvmx_bootmem_block_header {
/* Note: these are referenced from assembly routines in the bootloader,
* so this structure should not be changed without changing those
* routines as well.
*/
u64 next_block_addr;
u64 size;
};
/*
* Structure for named memory blocks
* Number of descriptors
* available can be changed without affecting compatibility,
* but name length changes require a bump in the bootmem
* descriptor version
* Note: This structure must be naturally 64 bit aligned, as a single
* memory image will be used by both 32 and 64 bit programs.
*/
struct cvmx_bootmem_named_block_desc {
u64 base_addr; /* Base address of named block */
/*
* Size actually allocated for named block (may differ from requested)
*/
u64 size;
char name[CVMX_BOOTMEM_NAME_LEN]; /* name of named block */
};
/* Current descriptor versions */
/* CVMX bootmem descriptor major version */
#define CVMX_BOOTMEM_DESC_MAJ_VER 3
/* CVMX bootmem descriptor minor version */
#define CVMX_BOOTMEM_DESC_MIN_VER 0
/*
* First three members of cvmx_bootmem_desc_t are left in original
* positions for backwards compatibility.
*/
struct cvmx_bootmem_desc {
/* Linux compatible proxy for __BIG_ENDIAN */
u32 lock; /* spinlock to control access to list */
u32 flags; /* flags for indicating various conditions */
u64 head_addr;
/* incremented changed when incompatible changes made */
u32 major_version;
/*
* incremented changed when compatible changes made, reset to
* zero when major incremented
*/
u32 minor_version;
u64 app_data_addr;
u64 app_data_size;
/* number of elements in named blocks array */
u32 named_block_num_blocks;
/* length of name array in bootmem blocks */
u32 named_block_name_len;
/* address of named memory block descriptors */
u64 named_block_array_addr;
};
/**
* Initialize the boot alloc memory structures. This is
* normally called inside of cvmx_user_app_init()
*
* @param mem_desc_addr Address of the free memory list
* @return
*/
int cvmx_bootmem_init(u64 mem_desc_addr);
/**
* Allocate a block of memory from the free list that was passed
* to the application by the bootloader.
* This is an allocate-only algorithm, so freeing memory is not possible.
*
* @param size Size in bytes of block to allocate
* @param alignment Alignment required - must be power of 2
*
* Return: pointer to block of memory, NULL on error
*/
void *cvmx_bootmem_alloc(u64 size, u64 alignment);
/**
* Allocate a block of memory from the free list that was passed
* to the application by the bootloader from a specific node.
* This is an allocate-only algorithm, so freeing memory is not possible.
*
* @param node The node to allocate memory from
* @param size Size in bytes of block to allocate
* @param alignment Alignment required - must be power of 2
*
* Return: pointer to block of memory, NULL on error
*/
void *cvmx_bootmem_alloc_node(u64 node, u64 size, u64 alignment);
/**
* Allocate a block of memory from the free list that was
* passed to the application by the bootloader at a specific
* address. This is an allocate-only algorithm, so
* freeing memory is not possible. Allocation will fail if
* memory cannot be allocated at the specified address.
*
* @param size Size in bytes of block to allocate
* @param address Physical address to allocate memory at. If this
* memory is not available, the allocation fails.
* @param alignment Alignment required - must be power of 2
* Return: pointer to block of memory, NULL on error
*/
void *cvmx_bootmem_alloc_address(u64 size, u64 address,
u64 alignment);
/**
* Allocate a block of memory from the free list that was
* passed to the application by the bootloader within a specified
* address range. This is an allocate-only algorithm, so
* freeing memory is not possible. Allocation will fail if
* memory cannot be allocated in the requested range.
*
* @param size Size in bytes of block to allocate
* @param min_addr defines the minimum address of the range
* @param max_addr defines the maximum address of the range
* @param alignment Alignment required - must be power of 2
* Return: pointer to block of memory, NULL on error
*/
void *cvmx_bootmem_alloc_range(u64 size, u64 alignment,
u64 min_addr, u64 max_addr);
/**
* Allocate a block of memory from the free list that was passed
* to the application by the bootloader, and assign it a name in the
* global named block table. (part of the cvmx_bootmem_descriptor_t structure)
* Named blocks can later be freed.
*
* @param size Size in bytes of block to allocate
* @param alignment Alignment required - must be power of 2
* @param name name of block - must be less than CVMX_BOOTMEM_NAME_LEN bytes
*
* Return: pointer to block of memory, NULL on error
*/
void *cvmx_bootmem_alloc_named(u64 size, u64 alignment,
const char *name);
/**
* Allocate a block of memory from the free list that was passed
* to the application by the bootloader, and assign it a name in the
* global named block table. (part of the cvmx_bootmem_descriptor_t structure)
* Named blocks can later be freed.
*
* @param size Size in bytes of block to allocate
* @param alignment Alignment required - must be power of 2
* @param name name of block - must be less than CVMX_BOOTMEM_NAME_LEN bytes
* @param flags Flags to control options for the allocation.
*
* Return: pointer to block of memory, NULL on error
*/
void *cvmx_bootmem_alloc_named_flags(u64 size, u64 alignment,
const char *name, u32 flags);
/**
* Allocate a block of memory from the free list that was passed
* to the application by the bootloader, and assign it a name in the
* global named block table. (part of the cvmx_bootmem_descriptor_t structure)
* Named blocks can later be freed.
*
* @param size Size in bytes of block to allocate
* @param address Physical address to allocate memory at. If this
* memory is not available, the allocation fails.
* @param name name of block - must be less than CVMX_BOOTMEM_NAME_LEN bytes
*
* Return: pointer to block of memory, NULL on error
*/
void *cvmx_bootmem_alloc_named_address(u64 size, u64 address,
const char *name);
/**
* Allocate a block of memory from a specific range of the free list
* that was passed to the application by the bootloader, and assign it
* a name in the global named block table. (part of the
* cvmx_bootmem_descriptor_t structure) Named blocks can later be
* freed. If request cannot be satisfied within the address range
* specified, NULL is returned
*
* @param size Size in bytes of block to allocate
* @param min_addr minimum address of range
* @param max_addr maximum address of range
* @param align Alignment of memory to be allocated. (must be a power of 2)
* @param name name of block - must be less than CVMX_BOOTMEM_NAME_LEN bytes
*
* Return: pointer to block of memory, NULL on error
*/
void *cvmx_bootmem_alloc_named_range(u64 size, u64 min_addr,
u64 max_addr, u64 align,
const char *name);
/**
* Allocate if needed a block of memory from a specific range of the
* free list that was passed to the application by the bootloader, and
* assign it a name in the global named block table. (part of the
* cvmx_bootmem_descriptor_t structure) Named blocks can later be
* freed. If the requested name block is already allocated, return
* the pointer to block of memory. If request cannot be satisfied
* within the address range specified, NULL is returned
*
* @param size Size in bytes of block to allocate
* @param min_addr minimum address of range
* @param max_addr maximum address of range
* @param align Alignment of memory to be allocated. (must be a power of 2)
* @param name name of block - must be less than CVMX_BOOTMEM_NAME_LEN bytes
* @param init Initialization function
*
* The initialization function is optional, if omitted the named block
* is initialized to all zeros when it is created, i.e. once.
*
* Return: pointer to block of memory, NULL on error
*/
void *cvmx_bootmem_alloc_named_range_once(u64 size,
u64 min_addr,
u64 max_addr,
u64 align,
const char *name,
void (*init)(void *));
/**
* Allocate all free memory starting at the start address. This is used to
* prevent any free blocks from later being allocated within the reserved space.
* Note that any memory allocated with this function cannot be later freed.
*
* @param start_addr Starting address to reserve
* @param size Size in bytes to reserve starting at start_addr
* @param name Name to assign to reserved blocks
* @param flags Flags to use when reserving memory
*
* Return: 0 on failure,
* !0 on success
*/
int cvmx_bootmem_reserve_memory(u64 start_addr, u64 size,
const char *name, u32 flags);
/**
* Frees a previously allocated named bootmem block.
*
* @param name name of block to free
*
* Return: 0 on failure,
* !0 on success
*/
int cvmx_bootmem_free_named(const char *name);
/**
* Finds a named bootmem block by name.
*
* @param name name of block to free
*
* Return: pointer to named block descriptor on success
* 0 on failure
*/
const struct cvmx_bootmem_named_block_desc *
cvmx_bootmem_find_named_block(const char *name);
/**
* Returns the size of available memory in bytes, only
* counting blocks that are at least as big as the minimum block
* size.
*
* @param min_block_size
* Minimum block size to count in total.
*
* Return: Number of bytes available for allocation that meet the
* block size requirement
*/
u64 cvmx_bootmem_available_mem(u64 min_block_size);
/**
* Prints out the list of named blocks that have been allocated
* along with their addresses and sizes.
* This is primarily used for debugging purposes
*/
void cvmx_bootmem_print_named(void);
/**
* Allocates a block of physical memory from the free list, at
* (optional) requested address and alignment.
*
* @param req_size size of region to allocate. All requests are
* rounded up to be a multiple CVMX_BOOTMEM_ALIGNMENT_SIZE bytes size
*
* @param address_min Minimum address that block can occupy.
*
* @param address_max Specifies the maximum address_min (inclusive)
* that the allocation can use.
*
* @param alignment Requested alignment of the block. If this
* alignment cannot be met, the allocation fails.
* This must be a power of 2. (Note: Alignment of
* CVMX_BOOTMEM_ALIGNMENT_SIZE bytes is required, and
* internally enforced. Requested alignments of less
* than CVMX_BOOTMEM_ALIGNMENT_SIZE are set to
* CVMX_BOOTMEM_ALIGNMENT_SIZE.)
* @param flags Flags to control options for the allocation.
*
* Return: physical address of block allocated, or -1 on failure
*/
s64 cvmx_bootmem_phy_alloc(u64 req_size, u64 address_min, u64 address_max,
u64 alignment, u32 flags);
/**
* Allocates a named block of physical memory from the free list, at
* (optional) requested address and alignment.
*
* @param size size of region to allocate. All requests are rounded
* up to be a multiple CVMX_BOOTMEM_ALIGNMENT_SIZE bytes size
*
* @param min_addr Minimum address that block can occupy.
*
* @param max_addr Specifies the maximum address_min (inclusive) that
* the allocation can use.
*
* @param alignment Requested alignment of the block. If this
* alignment cannot be met, the allocation fails.
* This must be a power of 2. (Note: Alignment of
* CVMX_BOOTMEM_ALIGNMENT_SIZE bytes is required, and
* internally enforced. Requested alignments of less
* than CVMX_BOOTMEM_ALIGNMENT_SIZE are set to
* CVMX_BOOTMEM_ALIGNMENT_SIZE.)
*
* @param name name to assign to named block
*
* @param flags Flags to control options for the allocation.
*
* Return: physical address of block allocated, or -1 on failure
*/
s64 cvmx_bootmem_phy_named_block_alloc(u64 size, u64 min_addr, u64 max_addr,
u64 alignment, const char *name,
u32 flags);
/**
* Finds a named memory block by name.
* Also used for finding an unused entry in the named block table.
*
* @param name Name of memory block to find. If NULL pointer given,
* then finds unused descriptor, if available.
*
* @param flags Flags to control options for the allocation.
*
* Return: Physical address of the memory block descriptor, zero if not
* found. If zero returned when name parameter is NULL, then no
* memory block descriptors are available.
*/
u64 cvmx_bootmem_phy_named_block_find(const char *name, u32 flags);
/**
* Returns the size of available memory in bytes, only
* counting blocks that are at least as big as the minimum block
* size.
*
* @param min_block_size
* Minimum block size to count in total.
*
* Return: Number of bytes available for allocation that meet the
* block size requirement
*/
u64 cvmx_bootmem_phy_available_mem(u64 min_block_size);
/**
* Frees a named block.
*
* @param name name of block to free
* @param flags flags for passing options
*
* Return: 0 on failure
* 1 on success
*/
int cvmx_bootmem_phy_named_block_free(const char *name, u32 flags);
/**
* Frees a block to the bootmem allocator list. This must
* be used with care, as the size provided must match the size
* of the block that was allocated, or the list will become
* corrupted.
*
* IMPORTANT: This is only intended to be used as part of named block
* frees and initial population of the free memory list.
* *
*
* @param phy_addr physical address of block
* @param size size of block in bytes.
* @param flags flags for passing options
*
* Return: 1 on success,
* 0 on failure
*/
int __cvmx_bootmem_phy_free(u64 phy_addr, u64 size, u32 flags);
/**
* Prints the list of currently allocated named blocks
*
*/
void cvmx_bootmem_phy_named_block_print(void);
/**
* Prints the list of available memory.
*
*/
void cvmx_bootmem_phy_list_print(void);
/**
* This function initializes the free memory list used by cvmx_bootmem.
* This must be called before any allocations can be done.
*
* @param mem_size Total memory available, in bytes
*
* @param low_reserved_bytes Number of bytes to reserve (leave out of
* free list) at address 0x0.
*
* @param desc_buffer Buffer for the bootmem descriptor. This must be
* a 32 bit addressable address.
*
* Return: 1 on success
* 0 on failure
*/
s64 cvmx_bootmem_phy_mem_list_init(u64 mem_size, u32 low_reserved_bytes,
struct cvmx_bootmem_desc *desc_buffer);
/**
* This function initializes the free memory list used by cvmx_bootmem.
* This must be called before any allocations can be done.
*
* @param nodemask Nodemask - one bit per node (bit0->node0, bit1->node1,...)
*
* @param mem_size[] Array of memory sizes in MBytes per node ([0]->node0,...)
*
* @param low_reserved_bytes Number of bytes to reserve (leave out of
* free list) at address 0x0.
*
* @param desc_buffer Buffer for the bootmem descriptor. This must be
* a 32 bit addressable address.
*
* Return: 1 on success
* 0 on failure
*/
s64 cvmx_bootmem_phy_mem_list_init_multi(u8 nodemask, u32 mem_size[],
u32 low_reserved_bytes,
struct cvmx_bootmem_desc *desc_buffer);
/**
* Locks the bootmem allocator. This is useful in certain situations
* where multiple allocations must be made without being interrupted.
* This should be used with the CVMX_BOOTMEM_FLAG_NO_LOCKING flag.
*
*/
void cvmx_bootmem_lock(void);
/**
* Unlocks the bootmem allocator. This is useful in certain situations
* where multiple allocations must be made without being interrupted.
* This should be used with the CVMX_BOOTMEM_FLAG_NO_LOCKING flag.
*
*/
void cvmx_bootmem_unlock(void);
/**
* Internal use function to get the current descriptor pointer
*/
void *__cvmx_bootmem_internal_get_desc_ptr(void);
/**
* Internal use. This is userd to get a pointer to a physical
* address. For linux n32 the physical address in mmaped to a virtual
* address and the virtual address is returned. For n64 the address
* is converted to an xkphys address and the xkhpys address is
* returned.
*/
void *__cvmx_phys_addr_to_ptr(u64 phys, int size);
const struct cvmx_bootmem_named_block_desc *
__cvmx_bootmem_find_named_block_flags(const char *name, u32 flags);
void *cvmx_bootmem_alloc_named_range_flags(u64 size, u64 min_addr,
u64 max_addr, u64 align,
const char *name, u32 flags);
u64 cvmx_bootmem_phy_alloc_range(u64 size, u64 alignment,
u64 min_addr, u64 max_addr);
#endif /* __CVMX_BOOTMEM_H__ */
|