~funderscore blog cgit wiki get in touch
aboutsummaryrefslogtreecommitdiff
blob: a133a5d8116159d2cc5cca51140c773adff59cfa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
// SPDX-License-Identifier: GPL-2.0+
/*
 * Copyright (C) 2015 Google, Inc
 *
 * Based on code from the coreboot file of the same name
 */

#include <common.h>
#include <cpu.h>
#include <dm.h>
#include <errno.h>
#include <log.h>
#include <malloc.h>
#include <qfw.h>
#include <asm/atomic.h>
#include <asm/cpu.h>
#include <asm/global_data.h>
#include <asm/interrupt.h>
#include <asm/io.h>
#include <asm/lapic.h>
#include <asm/microcode.h>
#include <asm/mp.h>
#include <asm/msr.h>
#include <asm/mtrr.h>
#include <asm/processor.h>
#include <asm/sipi.h>
#include <dm/device-internal.h>
#include <dm/uclass-internal.h>
#include <dm/lists.h>
#include <dm/root.h>
#include <linux/delay.h>
#include <linux/linkage.h>

DECLARE_GLOBAL_DATA_PTR;

/*
 * Setting up multiprocessing
 *
 * See https://www.intel.com/content/www/us/en/intelligent-systems/intel-boot-loader-development-kit/minimal-intel-architecture-boot-loader-paper.html
 *
 * Note that this file refers to the boot CPU (the one U-Boot is running on) as
 * the BSP (BootStrap Processor) and the others as APs (Application Processors).
 *
 * This module works by loading some setup code into RAM at AP_DEFAULT_BASE and
 * telling each AP to execute it. The code that each AP runs is in
 * sipi_vector.S (see ap_start16) which includes a struct sipi_params at the
 * end of it. Those parameters are set up by the C code.

 * Setting up is handled by load_sipi_vector(). It inits the common block of
 * parameters (sipi_params) which tell the APs what to do. This block includes
 * microcode and the MTTRs (Memory-Type-Range Registers) from the main CPU.
 * There is also an ap_count which each AP increments as it starts up, so the
 * BSP can tell how many checked in.
 *
 * The APs are started with a SIPI (Startup Inter-Processor Interrupt) which
 * tells an AP to start executing at a particular address, in this case
 * AP_DEFAULT_BASE which contains the code copied from ap_start16. This protocol
 * is handled by start_aps().
 *
 * After being started, each AP runs the code in ap_start16, switches to 32-bit
 * mode, runs the code at ap_start, then jumps to c_handler which is ap_init().
 * This runs a very simple 'flight plan' described in mp_steps(). This sets up
 * the CPU and waits for further instructions by looking at its entry in
 * ap_callbacks[]. Note that the flight plan is only actually run for each CPU
 * in bsp_do_flight_plan(): once the BSP completes each flight record, it sets
 * mp_flight_record->barrier to 1 to allow the APs to executed the record one
 * by one.
 *
 * CPUS are numbered sequentially from 0 using the device tree:
 *
 *	cpus {
 *		bootph-all;
 *		#address-cells = <1>;
 *		#size-cells = <0>;
 *
 *		cpu@0 {
 *			bootph-all;
 *			device_type = "cpu";
 *			compatible = "intel,apl-cpu";
 *			reg = <0>;
 *			intel,apic-id = <0>;
 *		};
 *
 *		cpu@1 {
 *			device_type = "cpu";
 *			compatible = "intel,apl-cpu";
 *			reg = <1>;
 *			intel,apic-id = <2>;
 *		};
 *
 * Here the 'reg' property is the CPU number and then is placed in dev_seq(cpu)
 * so that we can index into ap_callbacks[] using that. The APIC ID is different
 * and may not be sequential (it typically is if hyperthreading is supported).
 *
 * Once APs are inited they wait in ap_wait_for_instruction() for instructions.
 * Instructions come in the form of a function to run. This logic is in
 * mp_run_on_cpus() which supports running on any one AP, all APs, just the BSP
 * or all CPUs. The BSP logic is handled directly in mp_run_on_cpus(), by
 * calling the function. For the APs, callback information is stored in a
 * single, common struct mp_callback and a pointer to this is written to each
 * AP's slot in ap_callbacks[] by run_ap_work(). All APs get the message even
 * if it is only for one of them. When an AP notices a message it checks whether
 * it should call the function (see check in ap_wait_for_instruction()) and then
 * does so if needed. After that it sets its slot to NULL to indicate it is
 * done.
 *
 * While U-Boot is running it can use mp_run_on_cpus() to run code on the APs.
 * An example of this is the 'mtrr' command which allows reading and changing
 * the MTRRs on all CPUs.
 *
 * Before U-Boot exits it calls mp_park_aps() which tells all CPUs to halt by
 * executing a 'hlt' instruction. That allows them to be used by Linux when it
 * starts up.
 */

/* This also needs to match the sipi.S assembly code for saved MSR encoding */
struct __packed saved_msr {
	uint32_t index;
	uint32_t lo;
	uint32_t hi;
};

/**
 * struct mp_flight_plan - Holds the flight plan
 *
 * @num_records: Number of flight records
 * @records: Pointer to each record
 */
struct mp_flight_plan {
	int num_records;
	struct mp_flight_record *records;
};

/**
 * struct mp_callback - Callback information for APs
 *
 * @func: Function to run
 * @arg: Argument to pass to the function
 * @logical_cpu_number: Either a CPU number (i.e. dev_seq(cpu) or a special
 *	value like MP_SELECT_BSP. It tells the AP whether it should process this
 *	callback
 */
struct mp_callback {
	mp_run_func func;
	void *arg;
	int logical_cpu_number;
};

/* Stores the flight plan so that APs can find it */
static struct mp_flight_plan mp_info;

/*
 * ap_callbacks - Callback mailbox array
 *
 * Array of callback, one entry for each available CPU, indexed by the CPU
 * number, which is dev_seq(cpu). The entry for the main CPU is never used.
 * When this is NULL, there is no pending work for the CPU to run. When
 * non-NULL it points to the mp_callback structure. This is shared between all
 * CPUs, so should only be written by the main CPU.
 */
static struct mp_callback **ap_callbacks;

static inline void barrier_wait(atomic_t *b)
{
	while (atomic_read(b) == 0)
		asm("pause");
	mfence();
}

static inline void release_barrier(atomic_t *b)
{
	mfence();
	atomic_set(b, 1);
}

static inline void stop_this_cpu(void)
{
	/* Called by an AP when it is ready to halt and wait for a new task */
	for (;;)
		cpu_hlt();
}

/* Returns 1 if timeout waiting for APs. 0 if target APs found */
static int wait_for_aps(atomic_t *val, int target, int total_delay,
			int delay_step)
{
	int timeout = 0;
	int delayed = 0;

	while (atomic_read(val) != target) {
		udelay(delay_step);
		delayed += delay_step;
		if (delayed >= total_delay) {
			timeout = 1;
			break;
		}
	}

	return timeout;
}

static void ap_do_flight_plan(struct udevice *cpu)
{
	int i;

	for (i = 0; i < mp_info.num_records; i++) {
		struct mp_flight_record *rec = &mp_info.records[i];

		atomic_inc(&rec->cpus_entered);
		barrier_wait(&rec->barrier);

		if (rec->ap_call != NULL)
			rec->ap_call(cpu, rec->ap_arg);
	}
}

static int find_cpu_by_apic_id(int apic_id, struct udevice **devp)
{
	struct udevice *dev;

	*devp = NULL;
	for (uclass_find_first_device(UCLASS_CPU, &dev);
	     dev;
	     uclass_find_next_device(&dev)) {
		struct cpu_plat *plat = dev_get_parent_plat(dev);

		if (plat->cpu_id == apic_id) {
			*devp = dev;
			return 0;
		}
	}

	return -ENOENT;
}

/*
 * By the time APs call ap_init() caching has been setup, and microcode has
 * been loaded
 */
static void ap_init(unsigned int cpu_index)
{
	struct udevice *dev;
	int apic_id;
	int ret;

	/* Ensure the local apic is enabled */
	enable_lapic();

	apic_id = lapicid();
	ret = find_cpu_by_apic_id(apic_id, &dev);
	if (ret) {
		debug("Unknown CPU apic_id %x\n", apic_id);
		goto done;
	}

	debug("AP: slot %d apic_id %x, dev %s\n", cpu_index, apic_id,
	      dev ? dev->name : "(apic_id not found)");

	/*
	 * Walk the flight plan, which only returns if CONFIG_SMP_AP_WORK is not
	 * enabled
	 */
	ap_do_flight_plan(dev);

done:
	stop_this_cpu();
}

static const unsigned int fixed_mtrrs[NUM_FIXED_MTRRS] = {
	MTRR_FIX_64K_00000_MSR, MTRR_FIX_16K_80000_MSR, MTRR_FIX_16K_A0000_MSR,
	MTRR_FIX_4K_C0000_MSR, MTRR_FIX_4K_C8000_MSR, MTRR_FIX_4K_D0000_MSR,
	MTRR_FIX_4K_D8000_MSR, MTRR_FIX_4K_E0000_MSR, MTRR_FIX_4K_E8000_MSR,
	MTRR_FIX_4K_F0000_MSR, MTRR_FIX_4K_F8000_MSR,
};

static inline struct saved_msr *save_msr(int index, struct saved_msr *entry)
{
	msr_t msr;

	msr = msr_read(index);
	entry->index = index;
	entry->lo = msr.lo;
	entry->hi = msr.hi;

	/* Return the next entry */
	entry++;
	return entry;
}

static int save_bsp_msrs(char *start, int size)
{
	int msr_count;
	int num_var_mtrrs;
	struct saved_msr *msr_entry;
	int i;
	msr_t msr;

	/* Determine number of MTRRs need to be saved */
	msr = msr_read(MTRR_CAP_MSR);
	num_var_mtrrs = msr.lo & 0xff;

	/* 2 * num_var_mtrrs for base and mask. +1 for IA32_MTRR_DEF_TYPE */
	msr_count = 2 * num_var_mtrrs + NUM_FIXED_MTRRS + 1;

	if ((msr_count * sizeof(struct saved_msr)) > size) {
		printf("Cannot mirror all %d msrs\n", msr_count);
		return -ENOSPC;
	}

	msr_entry = (void *)start;
	for (i = 0; i < NUM_FIXED_MTRRS; i++)
		msr_entry = save_msr(fixed_mtrrs[i], msr_entry);

	for (i = 0; i < num_var_mtrrs; i++) {
		msr_entry = save_msr(MTRR_PHYS_BASE_MSR(i), msr_entry);
		msr_entry = save_msr(MTRR_PHYS_MASK_MSR(i), msr_entry);
	}

	msr_entry = save_msr(MTRR_DEF_TYPE_MSR, msr_entry);

	return msr_count;
}

static int load_sipi_vector(atomic_t **ap_countp, int num_cpus)
{
	struct sipi_params_16bit *params16;
	struct sipi_params *params;
	static char msr_save[512];
	char *stack;
	ulong addr;
	int code_len;
	int size;
	int ret;

	/* Copy in the code */
	code_len = ap_start16_code_end - ap_start16;
	debug("Copying SIPI code to %x: %d bytes\n", AP_DEFAULT_BASE,
	      code_len);
	memcpy((void *)AP_DEFAULT_BASE, ap_start16, code_len);

	addr = AP_DEFAULT_BASE + (ulong)sipi_params_16bit - (ulong)ap_start16;
	params16 = (struct sipi_params_16bit *)addr;
	params16->ap_start = (uint32_t)ap_start;
	params16->gdt = (uint32_t)gd->arch.gdt;
	params16->gdt_limit = X86_GDT_SIZE - 1;
	debug("gdt = %x, gdt_limit = %x\n", params16->gdt, params16->gdt_limit);

	params = (struct sipi_params *)sipi_params;
	debug("SIPI 32-bit params at %p\n", params);
	params->idt_ptr = (uint32_t)x86_get_idt();

	params->stack_size = CONFIG_AP_STACK_SIZE;
	size = params->stack_size * num_cpus;
	stack = memalign(4096, size);
	if (!stack)
		return -ENOMEM;
	params->stack_top = (u32)(stack + size);
#if !defined(CONFIG_QEMU) && !defined(CONFIG_HAVE_FSP) && \
	!defined(CONFIG_INTEL_MID)
	params->microcode_ptr = ucode_base;
	debug("Microcode at %x\n", params->microcode_ptr);
#endif
	params->msr_table_ptr = (u32)msr_save;
	ret = save_bsp_msrs(msr_save, sizeof(msr_save));
	if (ret < 0)
		return ret;
	params->msr_count = ret;

	params->c_handler = (uint32_t)&ap_init;

	*ap_countp = &params->ap_count;
	atomic_set(*ap_countp, 0);
	debug("SIPI vector is ready\n");

	return 0;
}

static int check_cpu_devices(int expected_cpus)
{
	int i;

	for (i = 0; i < expected_cpus; i++) {
		struct udevice *dev;
		int ret;

		ret = uclass_find_device(UCLASS_CPU, i, &dev);
		if (ret) {
			debug("Cannot find CPU %d in device tree\n", i);
			return ret;
		}
	}

	return 0;
}

/* Returns 1 for timeout. 0 on success */
static int apic_wait_timeout(int total_delay, const char *msg)
{
	int total = 0;

	if (!(lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY))
		return 0;

	debug("Waiting for %s...", msg);
	while (lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY) {
		udelay(50);
		total += 50;
		if (total >= total_delay) {
			debug("timed out: aborting\n");
			return -ETIMEDOUT;
		}
	}
	debug("done\n");

	return 0;
}

/**
 * start_aps() - Start up the APs and count how many we find
 *
 * This is called on the boot processor to start up all the other processors
 * (here called APs).
 *
 * @num_aps: Number of APs we expect to find
 * @ap_count: Initially zero. Incremented by this function for each AP found
 * Return: 0 if all APs were set up correctly or there are none to set up,
 *	-ENOSPC if the SIPI vector is too high in memory,
 *	-ETIMEDOUT if the ICR is busy or the second SIPI fails to complete
 *	-EIO if not all APs check in correctly
 */
static int start_aps(int num_aps, atomic_t *ap_count)
{
	int sipi_vector;
	/* Max location is 4KiB below 1MiB */
	const int max_vector_loc = ((1 << 20) - (1 << 12)) >> 12;

	if (num_aps == 0)
		return 0;

	/* The vector is sent as a 4k aligned address in one byte */
	sipi_vector = AP_DEFAULT_BASE >> 12;

	if (sipi_vector > max_vector_loc) {
		printf("SIPI vector too large! 0x%08x\n",
		       sipi_vector);
		return -ENOSPC;
	}

	debug("Attempting to start %d APs\n", num_aps);

	if (apic_wait_timeout(1000, "ICR not to be busy"))
		return -ETIMEDOUT;

	/* Send INIT IPI to all but self */
	lapic_write(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
	lapic_write(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
		    LAPIC_DM_INIT);
	debug("Waiting for 10ms after sending INIT\n");
	mdelay(10);

	/* Send 1st SIPI */
	if (apic_wait_timeout(1000, "ICR not to be busy"))
		return -ETIMEDOUT;

	lapic_write(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
	lapic_write(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
		    LAPIC_DM_STARTUP | sipi_vector);
	if (apic_wait_timeout(10000, "first SIPI to complete"))
		return -ETIMEDOUT;

	/* Wait for CPUs to check in up to 200 us */
	wait_for_aps(ap_count, num_aps, 200, 15);

	/* Send 2nd SIPI */
	if (apic_wait_timeout(1000, "ICR not to be busy"))
		return -ETIMEDOUT;

	lapic_write(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
	lapic_write(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
		    LAPIC_DM_STARTUP | sipi_vector);
	if (apic_wait_timeout(10000, "second SIPI to complete"))
		return -ETIMEDOUT;

	/* Wait for CPUs to check in */
	if (wait_for_aps(ap_count, num_aps, 10000, 50)) {
		debug("Not all APs checked in: %d/%d\n",
		      atomic_read(ap_count), num_aps);
		return -EIO;
	}

	return 0;
}

/**
 * bsp_do_flight_plan() - Do the flight plan on the BSP
 *
 * This runs the flight plan on the main CPU used to boot U-Boot
 *
 * @cpu: Device for the main CPU
 * @plan: Flight plan to run
 * @num_aps: Number of APs (CPUs other than the BSP)
 * @returns 0 on success, -ETIMEDOUT if an AP failed to come up
 */
static int bsp_do_flight_plan(struct udevice *cpu, struct mp_flight_plan *plan,
			      int num_aps)
{
	int i;
	int ret = 0;
	const int timeout_us = 100000;
	const int step_us = 100;

	for (i = 0; i < plan->num_records; i++) {
		struct mp_flight_record *rec = &plan->records[i];

		/* Wait for APs if the record is not released */
		if (atomic_read(&rec->barrier) == 0) {
			/* Wait for the APs to check in */
			if (wait_for_aps(&rec->cpus_entered, num_aps,
					 timeout_us, step_us)) {
				debug("MP record %d timeout\n", i);
				ret = -ETIMEDOUT;
			}
		}

		if (rec->bsp_call != NULL)
			rec->bsp_call(cpu, rec->bsp_arg);

		release_barrier(&rec->barrier);
	}

	return ret;
}

/**
 * get_bsp() - Get information about the bootstrap processor
 *
 * @devp: If non-NULL, returns CPU device corresponding to the BSP
 * @cpu_countp: If non-NULL, returns the total number of CPUs
 * Return: CPU number of the BSP, or -ve on error. If multiprocessing is not
 *	enabled, returns 0
 */
static int get_bsp(struct udevice **devp, int *cpu_countp)
{
	char processor_name[CPU_MAX_NAME_LEN];
	struct udevice *dev;
	int apic_id;
	int ret;

	cpu_get_name(processor_name);
	debug("CPU: %s\n", processor_name);

	apic_id = lapicid();
	ret = find_cpu_by_apic_id(apic_id, &dev);
	if (ret < 0) {
		printf("Cannot find boot CPU, APIC ID %d\n", apic_id);
		return ret;
	}
	ret = cpu_get_count(dev);
	if (ret < 0)
		return log_msg_ret("count", ret);
	if (devp)
		*devp = dev;
	if (cpu_countp)
		*cpu_countp = ret;

	return dev_seq(dev) >= 0 ? dev_seq(dev) : 0;
}

/**
 * read_callback() - Read the pointer in a callback slot
 *
 * This is called by APs to read their callback slot to see if there is a
 * pointer to new instructions
 *
 * @slot: Pointer to the AP's callback slot
 * Return: value of that pointer
 */
static struct mp_callback *read_callback(struct mp_callback **slot)
{
	dmb();

	return *slot;
}

/**
 * store_callback() - Store a pointer to the callback slot
 *
 * This is called by APs to write NULL into the callback slot when they have
 * finished the work requested by the BSP.
 *
 * @slot: Pointer to the AP's callback slot
 * @val: Value to write (e.g. NULL)
 */
static void store_callback(struct mp_callback **slot, struct mp_callback *val)
{
	*slot = val;
	dmb();
}

/**
 * run_ap_work() - Run a callback on selected APs
 *
 * This writes @callback to all APs and waits for them all to acknowledge it,
 * Note that whether each AP actually calls the callback depends on the value
 * of logical_cpu_number (see struct mp_callback). The logical CPU number is
 * the CPU device's req->seq value.
 *
 * @callback: Callback information to pass to all APs
 * @bsp: CPU device for the BSP
 * @num_cpus: The number of CPUs in the system (= number of APs + 1)
 * @expire_ms: Timeout to wait for all APs to finish, in milliseconds, or 0 for
 *	no timeout
 * Return: 0 if OK, -ETIMEDOUT if one or more APs failed to respond in time
 */
static int run_ap_work(struct mp_callback *callback, struct udevice *bsp,
		       int num_cpus, uint expire_ms)
{
	int cur_cpu = dev_seq(bsp);
	int num_aps = num_cpus - 1; /* number of non-BSPs to get this message */
	int cpus_accepted;
	ulong start;
	int i;

	if (!IS_ENABLED(CONFIG_SMP_AP_WORK)) {
		printf("APs already parked. CONFIG_SMP_AP_WORK not enabled\n");
		return -ENOTSUPP;
	}

	/* Signal to all the APs to run the func. */
	for (i = 0; i < num_cpus; i++) {
		if (cur_cpu != i)
			store_callback(&ap_callbacks[i], callback);
	}
	mfence();

	/* Wait for all the APs to signal back that call has been accepted. */
	start = get_timer(0);

	do {
		mdelay(1);
		cpus_accepted = 0;

		for (i = 0; i < num_cpus; i++) {
			if (cur_cpu == i)
				continue;
			if (!read_callback(&ap_callbacks[i]))
				cpus_accepted++;
		}

		if (expire_ms && get_timer(start) >= expire_ms) {
			log(UCLASS_CPU, LOGL_CRIT,
			    "AP call expired; %d/%d CPUs accepted\n",
			    cpus_accepted, num_aps);
			return -ETIMEDOUT;
		}
	} while (cpus_accepted != num_aps);

	/* Make sure we can see any data written by the APs */
	mfence();

	return 0;
}

/**
 * ap_wait_for_instruction() - Wait for and process requests from the main CPU
 *
 * This is called by APs (here, everything other than the main boot CPU) to
 * await instructions. They arrive in the form of a function call and argument,
 * which is then called. This uses a simple mailbox with atomic read/set
 *
 * @cpu: CPU that is waiting
 * @unused: Optional argument provided by struct mp_flight_record, not used here
 * Return: Does not return
 */
static int ap_wait_for_instruction(struct udevice *cpu, void *unused)
{
	struct mp_callback lcb;
	struct mp_callback **per_cpu_slot;

	if (!IS_ENABLED(CONFIG_SMP_AP_WORK))
		return 0;

	per_cpu_slot = &ap_callbacks[dev_seq(cpu)];

	while (1) {
		struct mp_callback *cb = read_callback(per_cpu_slot);

		if (!cb) {
			asm ("pause");
			continue;
		}

		/* Copy to local variable before using the value */
		memcpy(&lcb, cb, sizeof(lcb));
		mfence();
		if (lcb.logical_cpu_number == MP_SELECT_ALL ||
		    lcb.logical_cpu_number == MP_SELECT_APS ||
		    dev_seq(cpu) == lcb.logical_cpu_number)
			lcb.func(lcb.arg);

		/* Indicate we are finished */
		store_callback(per_cpu_slot, NULL);
	}

	return 0;
}

static int mp_init_cpu(struct udevice *cpu, void *unused)
{
	struct cpu_plat *plat = dev_get_parent_plat(cpu);

	plat->ucode_version = microcode_read_rev();
	plat->device_id = gd->arch.x86_device;

	return device_probe(cpu);
}

static struct mp_flight_record mp_steps[] = {
	MP_FR_BLOCK_APS(mp_init_cpu, NULL, mp_init_cpu, NULL),
	MP_FR_BLOCK_APS(ap_wait_for_instruction, NULL, NULL, NULL),
};

int mp_run_on_cpus(int cpu_select, mp_run_func func, void *arg)
{
	struct mp_callback lcb = {
		.func = func,
		.arg = arg,
		.logical_cpu_number = cpu_select,
	};
	struct udevice *dev;
	int num_cpus;
	int ret;

	ret = get_bsp(&dev, &num_cpus);
	if (ret < 0)
		return log_msg_ret("bsp", ret);
	if (cpu_select == MP_SELECT_ALL || cpu_select == MP_SELECT_BSP ||
	    cpu_select == ret) {
		/* Run on BSP first */
		func(arg);
	}

	if (!IS_ENABLED(CONFIG_SMP_AP_WORK) ||
	    !(gd->flags & GD_FLG_SMP_READY)) {
		/* Allow use of this function on the BSP only */
		if (cpu_select == MP_SELECT_BSP || !cpu_select)
			return 0;
		return -ENOTSUPP;
	}

	/* Allow up to 1 second for all APs to finish */
	ret = run_ap_work(&lcb, dev, num_cpus, 1000 /* ms */);
	if (ret)
		return log_msg_ret("aps", ret);

	return 0;
}

static void park_this_cpu(void *unused)
{
	stop_this_cpu();
}

int mp_park_aps(void)
{
	int ret;

	ret = mp_run_on_cpus(MP_SELECT_APS, park_this_cpu, NULL);
	if (ret)
		return log_ret(ret);

	return 0;
}

int mp_first_cpu(int cpu_select)
{
	struct udevice *dev;
	int num_cpus;
	int ret;

	/*
	 * This assumes that CPUs are numbered from 0. This function tries to
	 * avoid assuming the CPU 0 is the boot CPU
	 */
	if (cpu_select == MP_SELECT_ALL)
		return 0;   /* start with the first one */

	ret = get_bsp(&dev, &num_cpus);
	if (ret < 0)
		return log_msg_ret("bsp", ret);

	/* Return boot CPU if requested */
	if (cpu_select == MP_SELECT_BSP)
		return ret;

	/* Return something other than the boot CPU, if APs requested */
	if (cpu_select == MP_SELECT_APS && num_cpus > 1)
		return ret == 0 ? 1 : 0;

	/* Try to check for an invalid value */
	if (cpu_select < 0 || cpu_select >= num_cpus)
		return -EINVAL;

	return cpu_select;  /* return the only selected one */
}

int mp_next_cpu(int cpu_select, int prev_cpu)
{
	struct udevice *dev;
	int num_cpus;
	int ret;
	int bsp;

	/* If we selected the BSP or a particular single CPU, we are done */
	if (!IS_ENABLED(CONFIG_SMP_AP_WORK) || cpu_select == MP_SELECT_BSP ||
	    cpu_select >= 0)
		return -EFBIG;

	/* Must be doing MP_SELECT_ALL or MP_SELECT_APS; return the next CPU */
	ret = get_bsp(&dev, &num_cpus);
	if (ret < 0)
		return log_msg_ret("bsp", ret);
	bsp = ret;

	/* Move to the next CPU */
	assert(prev_cpu >= 0);
	ret = prev_cpu + 1;

	/* Skip the BSP if needed */
	if (cpu_select == MP_SELECT_APS && ret == bsp)
		ret++;
	if (ret >= num_cpus)
		return -EFBIG;

	return ret;
}

int mp_init(void)
{
	int num_aps, num_cpus;
	atomic_t *ap_count;
	struct udevice *cpu;
	int ret;

	if (IS_ENABLED(CONFIG_QFW)) {
		ret = qemu_cpu_fixup();
		if (ret)
			return ret;
	}

	ret = get_bsp(&cpu, &num_cpus);
	if (ret < 0) {
		debug("Cannot init boot CPU: err=%d\n", ret);
		return ret;
	}

	if (num_cpus < 2)
		debug("Warning: Only 1 CPU is detected\n");

	ret = check_cpu_devices(num_cpus);
	if (ret)
		log_warning("Warning: Device tree does not describe all CPUs. Extra ones will not be started correctly\n");

	ap_callbacks = calloc(num_cpus, sizeof(struct mp_callback *));
	if (!ap_callbacks)
		return -ENOMEM;

	/* Copy needed parameters so that APs have a reference to the plan */
	mp_info.num_records = ARRAY_SIZE(mp_steps);
	mp_info.records = mp_steps;

	/* Load the SIPI vector */
	ret = load_sipi_vector(&ap_count, num_cpus);
	if (ap_count == NULL)
		return -ENOENT;

	/*
	 * Make sure SIPI data hits RAM so the APs that come up will see
	 * the startup code even if the caches are disabled
	 */
	wbinvd();

	/* Start the APs providing number of APs and the cpus_entered field */
	num_aps = num_cpus - 1;
	ret = start_aps(num_aps, ap_count);
	if (ret) {
		mdelay(1000);
		debug("%d/%d eventually checked in?\n", atomic_read(ap_count),
		      num_aps);
		return ret;
	}

	/* Walk the flight plan for the BSP */
	ret = bsp_do_flight_plan(cpu, &mp_info, num_aps);
	if (ret) {
		debug("CPU init failed: err=%d\n", ret);
		return ret;
	}
	gd->flags |= GD_FLG_SMP_READY;

	return 0;
}