1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
|
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2016 General Electric Company
*/
#include "vpd_reader.h"
#include <malloc.h>
#include <i2c.h>
#include <linux/bch.h>
#include <stdlib.h>
#include <dm/uclass.h>
#include <i2c_eeprom.h>
#include <hexdump.h>
/* BCH configuration */
const struct {
int header_ecc_capability_bits;
int data_ecc_capability_bits;
unsigned int prim_poly;
struct {
int min;
int max;
} galois_field_order;
} bch_configuration = {
.header_ecc_capability_bits = 4,
.data_ecc_capability_bits = 16,
.prim_poly = 0,
.galois_field_order = {
.min = 5,
.max = 15,
},
};
static int calculate_galois_field_order(size_t source_length)
{
int gfo = bch_configuration.galois_field_order.min;
for (; gfo < bch_configuration.galois_field_order.max &&
((((1 << gfo) - 1) - ((int)source_length * 8)) < 0);
gfo++) {
}
if (gfo == bch_configuration.galois_field_order.max)
return -1;
return gfo + 1;
}
static int verify_bch(int ecc_bits, unsigned int prim_poly, u8 *data,
size_t data_length, const u8 *ecc, size_t ecc_length)
{
int gfo = calculate_galois_field_order(data_length);
if (gfo < 0)
return -1;
struct bch_control *bch = init_bch(gfo, ecc_bits, prim_poly);
if (!bch)
return -1;
if (bch->ecc_bytes != ecc_length) {
free_bch(bch);
return -1;
}
unsigned int *errloc = (unsigned int *)calloc(data_length,
sizeof(unsigned int));
int errors = decode_bch(bch, data, data_length, ecc, NULL, NULL,
errloc);
free_bch(bch);
if (errors < 0) {
free(errloc);
return -1;
}
if (errors > 0) {
for (int n = 0; n < errors; n++) {
if (errloc[n] >= 8 * data_length) {
/*
* n-th error located in ecc (no need for data
* correction)
*/
} else {
/* n-th error located in data */
data[errloc[n] / 8] ^= 1 << (errloc[n] % 8);
}
}
}
free(errloc);
return 0;
}
static const int ID;
static const int LEN = 1;
static const int VER = 2;
static const int TYP = 3;
static const int BLOCK_SIZE = 4;
static const u8 HEADER_BLOCK_ID;
static const u8 HEADER_BLOCK_LEN = 18;
static const u32 HEADER_BLOCK_MAGIC = 0xca53ca53;
static const size_t HEADER_BLOCK_VERIFY_LEN = 14;
static const size_t HEADER_BLOCK_ECC_OFF = 14;
static const size_t HEADER_BLOCK_ECC_LEN = 4;
static const u8 ECC_BLOCK_ID = 0xFF;
int vpd_reader(size_t size, u8 *data, struct vpd_cache *userdata,
int (*fn)(struct vpd_cache *, u8 id, u8 version, u8 type,
size_t size, u8 const *data))
{
if (size < HEADER_BLOCK_LEN || !data || !fn)
return -EINVAL;
/*
* +--------------------+----------------+--//--+--------------------+
* | header block | data block | ... | ecc block |
* +--------------------+----------------+--//--+--------------------+
* : : :
* +------+-------+-----+ +------+-------------+
* | id | magic | ecc | | ... | ecc |
* | len | off | | +------+-------------+
* | ver | size | | :
* | type | | | :
* +------+-------+-----+ :
* : : : :
* <----- [1] ----> <--------- [2] --------->
*
* Repair (if necessary) the contents of header block [1] by using a
* 4 byte ECC located at the end of the header block. A successful
* return value means that we can trust the header.
*/
int ret = verify_bch(bch_configuration.header_ecc_capability_bits,
bch_configuration.prim_poly, data,
HEADER_BLOCK_VERIFY_LEN,
&data[HEADER_BLOCK_ECC_OFF], HEADER_BLOCK_ECC_LEN);
if (ret < 0)
return ret;
/* Validate header block { id, length, version, type }. */
if (data[ID] != HEADER_BLOCK_ID || data[LEN] != HEADER_BLOCK_LEN ||
data[VER] != 0 || data[TYP] != 0 ||
ntohl(*(u32 *)(&data[4])) != HEADER_BLOCK_MAGIC)
return -EINVAL;
u32 offset = ntohl(*(u32 *)(&data[8]));
u16 size_bits = ntohs(*(u16 *)(&data[12]));
/* Check that ECC header fits. */
if (offset + 3 >= size)
return -EINVAL;
/* Validate ECC block. */
u8 *ecc = &data[offset];
if (ecc[ID] != ECC_BLOCK_ID || ecc[LEN] < BLOCK_SIZE ||
ecc[LEN] + offset > size ||
ecc[LEN] - BLOCK_SIZE != size_bits / 8 || ecc[VER] != 1 ||
ecc[TYP] != 1)
return -EINVAL;
/*
* Use the header block to locate the ECC block and verify the data
* blocks [2] against the ecc block ECC.
*/
ret = verify_bch(bch_configuration.data_ecc_capability_bits,
bch_configuration.prim_poly, &data[data[LEN]],
offset - data[LEN], &data[offset + BLOCK_SIZE],
ecc[LEN] - BLOCK_SIZE);
if (ret < 0)
return ret;
/* Stop after ECC. Ignore possible zero padding. */
size = offset;
for (;;) {
/* Move to next block. */
size -= data[LEN];
data += data[LEN];
if (size == 0) {
/* Finished iterating through blocks. */
return 0;
}
if (size < BLOCK_SIZE || data[LEN] < BLOCK_SIZE) {
/* Not enough data for a header, or short header. */
return -EINVAL;
}
ret = fn(userdata, data[ID], data[VER], data[TYP],
data[LEN] - BLOCK_SIZE, &data[BLOCK_SIZE]);
if (ret)
return ret;
}
}
int read_i2c_vpd(struct vpd_cache *cache,
int (*process_block)(struct vpd_cache *, u8 id, u8 version,
u8 type, size_t size, u8 const *data))
{
struct udevice *dev;
int ret;
u8 *data;
int size;
ret = uclass_get_device_by_name(UCLASS_I2C_EEPROM, "vpd@0", &dev);
if (ret)
return ret;
size = i2c_eeprom_size(dev);
if (size < 0) {
printf("Unable to get size of eeprom: %d\n", ret);
return ret;
}
data = malloc(size);
if (!data)
return -ENOMEM;
ret = i2c_eeprom_read(dev, 0, data, size);
if (ret) {
free(data);
return ret;
}
ret = vpd_reader(size, data, cache, process_block);
free(data);
return ret;
}
|