1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
|
// SPDX-License-Identifier: GPL-2.0+
/*
* Board specific initialization for IOT2050
* Copyright (c) Siemens AG, 2018-2023
*
* Authors:
* Le Jin <le.jin@siemens.com>
* Jan Kiszka <jan.kiszka@siemens.com>
*/
#include <common.h>
#include <bootstage.h>
#include <dm.h>
#include <fdt_support.h>
#include <i2c.h>
#include <led.h>
#include <malloc.h>
#include <mapmem.h>
#include <net.h>
#include <phy.h>
#include <spl.h>
#include <version.h>
#include <linux/delay.h>
#include <asm/arch/hardware.h>
#include <asm/gpio.h>
#include <asm/io.h>
#define IOT2050_INFO_MAGIC 0x20502050
struct iot2050_info {
u32 magic;
u16 size;
char name[20 + 1];
char serial[16 + 1];
char mlfb[18 + 1];
char uuid[32 + 1];
char a5e[18 + 1];
u8 mac_addr_cnt;
u8 mac_addr[8][ARP_HLEN];
char seboot_version[40 + 1];
} __packed;
/*
* Scratch SRAM (available before DDR RAM) contains extracted EEPROM data.
*/
#define IOT2050_INFO_DATA ((struct iot2050_info *) \
TI_SRAM_SCRATCH_BOARD_EEPROM_START)
DECLARE_GLOBAL_DATA_PTR;
struct gpio_config {
const char *gpio_name;
const char *label;
};
enum m2_connector_mode {
BKEY_PCIEX2 = 0,
BKEY_PCIE_EKEY_PCIE,
BKEY_USB30_EKEY_PCIE,
CONNECTOR_MODE_INVALID
};
struct m2_config_pins {
int config[4];
};
struct serdes_mux_control {
int ctrl_usb30_pcie0_lane0;
int ctrl_pcie1_pcie0;
int ctrl_usb30_pcie0_lane1;
};
struct m2_config_table {
struct m2_config_pins config_pins;
enum m2_connector_mode mode;
};
static const struct gpio_config serdes_mux_ctl_pin_info[] = {
{"gpio@600000_88", "CTRL_USB30_PCIE0_LANE0"},
{"gpio@600000_82", "CTRL_PCIE1_PCIE0"},
{"gpio@600000_89", "CTRL_USB30_PCIE0_LANE1"},
};
static const struct gpio_config m2_bkey_cfg_pin_info[] = {
{"gpio@601000_18", "KEY_CONFIG_0"},
{"gpio@601000_19", "KEY_CONFIG_1"},
{"gpio@601000_88", "KEY_CONFIG_2"},
{"gpio@601000_89", "KEY_CONFIG_3"},
};
static const struct m2_config_table m2_config_table[] = {
{{{0, 1, 0, 0}}, BKEY_PCIEX2},
{{{0, 0, 1, 0}}, BKEY_PCIE_EKEY_PCIE},
{{{0, 1, 1, 0}}, BKEY_PCIE_EKEY_PCIE},
{{{1, 0, 0, 1}}, BKEY_PCIE_EKEY_PCIE},
{{{1, 1, 0, 1}}, BKEY_PCIE_EKEY_PCIE},
{{{0, 0, 0, 1}}, BKEY_USB30_EKEY_PCIE},
{{{0, 1, 0, 1}}, BKEY_USB30_EKEY_PCIE},
{{{0, 0, 1, 1}}, BKEY_USB30_EKEY_PCIE},
{{{0, 1, 1, 1}}, BKEY_USB30_EKEY_PCIE},
{{{1, 0, 1, 1}}, BKEY_USB30_EKEY_PCIE},
};
static const struct serdes_mux_control serdes_mux_ctrl[] = {
[BKEY_PCIEX2] = {0, 0, 1},
[BKEY_PCIE_EKEY_PCIE] = {0, 1, 0},
[BKEY_USB30_EKEY_PCIE] = {1, 1, 0},
};
static const char *m2_connector_mode_name[] = {
[BKEY_PCIEX2] = "PCIe x2 (key B)",
[BKEY_PCIE_EKEY_PCIE] = "PCIe (key B) / PCIe (key E)",
[BKEY_USB30_EKEY_PCIE] = "USB 3.0 (key B) / PCIe (key E)",
};
static enum m2_connector_mode connector_mode;
#if defined(CONFIG_OF_LIBFDT) && defined(CONFIG_OF_BOARD_SETUP)
static void *connector_overlay;
static u32 connector_overlay_size;
#endif
static int get_pinvalue(const char *gpio_name, const char *label)
{
struct gpio_desc gpio;
if (dm_gpio_lookup_name(gpio_name, &gpio) < 0 ||
dm_gpio_request(&gpio, label) < 0 ||
dm_gpio_set_dir_flags(&gpio, GPIOD_IS_IN) < 0) {
pr_err("Cannot get pin %s for M.2 configuration\n", gpio_name);
return 0;
}
return dm_gpio_get_value(&gpio);
}
static void set_pinvalue(const char *gpio_name, const char *label, int value)
{
struct gpio_desc gpio;
if (dm_gpio_lookup_name(gpio_name, &gpio) < 0 ||
dm_gpio_request(&gpio, label) < 0 ||
dm_gpio_set_dir_flags(&gpio, GPIOD_IS_OUT) < 0) {
pr_err("Cannot set pin %s for M.2 configuration\n", gpio_name);
return;
}
dm_gpio_set_value(&gpio, value);
}
static bool board_is_advanced(void)
{
struct iot2050_info *info = IOT2050_INFO_DATA;
return info->magic == IOT2050_INFO_MAGIC &&
strstr((char *)info->name, "IOT2050-ADVANCED") != NULL;
}
static bool board_is_sr1(void)
{
struct iot2050_info *info = IOT2050_INFO_DATA;
return info->magic == IOT2050_INFO_MAGIC &&
strstr((char *)info->name, "-PG2") != NULL;
}
static bool board_is_m2(void)
{
struct iot2050_info *info = IOT2050_INFO_DATA;
return !board_is_sr1() && info->magic == IOT2050_INFO_MAGIC &&
strcmp((char *)info->name, "IOT2050-ADVANCED-M2") == 0;
}
static void remove_mmc1_target(void)
{
char *boot_targets = strdup(env_get("boot_targets"));
char *mmc1 = strstr(boot_targets, "mmc1");
if (mmc1) {
memmove(mmc1, mmc1 + 4, strlen(mmc1 + 4) + 1);
env_set("boot_targets", boot_targets);
}
free(boot_targets);
}
void set_board_info_env(void)
{
struct iot2050_info *info = IOT2050_INFO_DATA;
u8 __maybe_unused mac_cnt;
const char *fdtfile;
if (info->magic != IOT2050_INFO_MAGIC) {
pr_err("IOT2050: Board info parsing error!\n");
return;
}
if (env_get("board_uuid"))
return;
env_set("board_name", info->name);
env_set("board_serial", info->serial);
env_set("mlfb", info->mlfb);
env_set("board_uuid", info->uuid);
env_set("board_a5e", info->a5e);
env_set("fw_version", PLAIN_VERSION);
env_set("seboot_version", info->seboot_version);
if (IS_ENABLED(CONFIG_NET)) {
/* set MAC addresses to ensure forwarding to the OS */
for (mac_cnt = 0; mac_cnt < info->mac_addr_cnt; mac_cnt++) {
if (is_valid_ethaddr(info->mac_addr[mac_cnt]))
eth_env_set_enetaddr_by_index("eth",
mac_cnt + 1,
info->mac_addr[mac_cnt]);
}
}
if (board_is_advanced()) {
if (board_is_sr1())
fdtfile = "ti/k3-am6548-iot2050-advanced.dtb";
else if(board_is_m2())
fdtfile = "ti/k3-am6548-iot2050-advanced-m2.dtb";
else
fdtfile = "ti/k3-am6548-iot2050-advanced-pg2.dtb";
} else {
if (board_is_sr1())
fdtfile = "ti/k3-am6528-iot2050-basic.dtb";
else
fdtfile = "ti/k3-am6528-iot2050-basic-pg2.dtb";
/* remove the unavailable eMMC (mmc1) from the list */
remove_mmc1_target();
}
env_set("fdtfile", fdtfile);
env_save();
}
static void m2_overlay_prepare(void)
{
#if defined(CONFIG_OF_LIBFDT) && defined(CONFIG_OF_BOARD_SETUP)
const char *overlay_path;
void *overlay;
u64 loadaddr;
ofnode node;
int ret;
if (connector_mode == BKEY_PCIEX2)
return;
if (connector_mode == BKEY_PCIE_EKEY_PCIE)
overlay_path = "/fit-images/bkey-ekey-pcie-overlay";
else
overlay_path = "/fit-images/bkey-usb3-overlay";
node = ofnode_path(overlay_path);
if (!ofnode_valid(node))
goto fit_error;
ret = ofnode_read_u64(node, "load", &loadaddr);
if (ret)
goto fit_error;
ret = ofnode_read_u32(node, "size", &connector_overlay_size);
if (ret)
goto fit_error;
overlay = map_sysmem(loadaddr, connector_overlay_size);
connector_overlay = malloc(connector_overlay_size);
if (!connector_overlay)
goto fit_error;
memcpy(connector_overlay, overlay, connector_overlay_size);
return;
fit_error:
pr_err("M.2 device tree overlay %s not available,\n", overlay_path);
#endif
}
static void m2_connector_setup(void)
{
ulong m2_manual_config = env_get_ulong("m2_manual_config", 10,
CONNECTOR_MODE_INVALID);
const char *mode_info = "";
struct m2_config_pins config_pins;
unsigned int n;
/* enable M.2 connector power */
set_pinvalue("gpio@601000_17", "P3V3_M2_EN", 1);
udelay(4 * 100);
if (m2_manual_config < CONNECTOR_MODE_INVALID) {
mode_info = " [manual mode]";
connector_mode = m2_manual_config;
} else { /* auto detection */
for (n = 0; n < ARRAY_SIZE(config_pins.config); n++)
config_pins.config[n] =
get_pinvalue(m2_bkey_cfg_pin_info[n].gpio_name,
m2_bkey_cfg_pin_info[n].label);
connector_mode = CONNECTOR_MODE_INVALID;
for (n = 0; n < ARRAY_SIZE(m2_config_table); n++) {
if (!memcmp(config_pins.config,
m2_config_table[n].config_pins.config,
sizeof(config_pins.config))) {
connector_mode = m2_config_table[n].mode;
break;
}
}
if (connector_mode == CONNECTOR_MODE_INVALID) {
mode_info = " [fallback, card unknown/unsupported]";
connector_mode = BKEY_USB30_EKEY_PCIE;
}
}
printf("M.2: %s%s\n", m2_connector_mode_name[connector_mode],
mode_info);
/* configure serdes mux */
set_pinvalue(serdes_mux_ctl_pin_info[0].gpio_name,
serdes_mux_ctl_pin_info[0].label,
serdes_mux_ctrl[connector_mode].ctrl_usb30_pcie0_lane0);
set_pinvalue(serdes_mux_ctl_pin_info[1].gpio_name,
serdes_mux_ctl_pin_info[1].label,
serdes_mux_ctrl[connector_mode].ctrl_pcie1_pcie0);
set_pinvalue(serdes_mux_ctl_pin_info[2].gpio_name,
serdes_mux_ctl_pin_info[2].label,
serdes_mux_ctrl[connector_mode].ctrl_usb30_pcie0_lane1);
m2_overlay_prepare();
}
int board_init(void)
{
return 0;
}
int dram_init(void)
{
if (board_is_advanced())
gd->ram_size = SZ_2G;
else
gd->ram_size = SZ_1G;
return 0;
}
int dram_init_banksize(void)
{
dram_init();
/* Bank 0 declares the memory available in the DDR low region */
gd->bd->bi_dram[0].start = CFG_SYS_SDRAM_BASE;
gd->bd->bi_dram[0].size = gd->ram_size;
/* Bank 1 declares the memory available in the DDR high region */
gd->bd->bi_dram[1].start = 0;
gd->bd->bi_dram[1].size = 0;
return 0;
}
#ifdef CONFIG_SPL_LOAD_FIT
int board_fit_config_name_match(const char *name)
{
struct iot2050_info *info = IOT2050_INFO_DATA;
char upper_name[32];
/* skip the prefix "k3-am65x8-" */
name += 10;
if (info->magic != IOT2050_INFO_MAGIC ||
strlen(name) >= sizeof(upper_name))
return -1;
str_to_upper(name, upper_name, sizeof(upper_name));
if (!strcmp(upper_name, (char *)info->name))
return 0;
return -1;
}
#endif
int do_board_detect(void)
{
return 0;
}
#ifdef CONFIG_IOT2050_BOOT_SWITCH
static bool user_button_pressed(void)
{
struct udevice *red_led = NULL;
unsigned long count = 0;
struct gpio_desc gpio;
memset(&gpio, 0, sizeof(gpio));
if (dm_gpio_lookup_name("gpio@42110000_25", &gpio) < 0 ||
dm_gpio_request(&gpio, "USER button") < 0 ||
dm_gpio_set_dir_flags(&gpio, GPIOD_IS_IN) < 0)
return false;
if (dm_gpio_get_value(&gpio) == 1)
return false;
printf("USER button pressed - booting from external media only\n");
led_get_by_label("status-led-red", &red_led);
if (red_led)
led_set_state(red_led, LEDST_ON);
while (dm_gpio_get_value(&gpio) == 0 && count++ < 10000)
mdelay(1);
if (red_led)
led_set_state(red_led, LEDST_OFF);
return true;
}
#endif
#define SERDES0_LANE_SELECT 0x00104080
int board_late_init(void)
{
/* change CTRL_MMR register to let serdes0 not output USB3.0 signals. */
writel(0x3, SERDES0_LANE_SELECT);
if (board_is_m2())
m2_connector_setup();
set_board_info_env();
/* remove the eMMC if requested via button */
if (IS_ENABLED(CONFIG_IOT2050_BOOT_SWITCH) && board_is_advanced() &&
user_button_pressed())
remove_mmc1_target();
return 0;
}
#if defined(CONFIG_OF_LIBFDT) && defined(CONFIG_OF_BOARD_SETUP)
static void m2_fdt_fixup(void *blob)
{
void *overlay_copy = NULL;
void *fdt_copy = NULL;
u32 fdt_size;
int err;
if (!connector_overlay)
return;
/*
* We need to work with temporary copies here because fdt_overlay_apply
* is destructive to the overlay and also to the target blob, even if
* application fails.
*/
fdt_size = fdt_totalsize(blob);
fdt_copy = malloc(fdt_size);
if (!fdt_copy)
goto fixup_error;
memcpy(fdt_copy, blob, fdt_size);
overlay_copy = malloc(connector_overlay_size);
if (!overlay_copy)
goto fixup_error;
memcpy(overlay_copy, connector_overlay, connector_overlay_size);
err = fdt_overlay_apply_verbose(fdt_copy, overlay_copy);
if (err)
goto fixup_error;
memcpy(blob, fdt_copy, fdt_size);
cleanup:
free(fdt_copy);
free(overlay_copy);
return;
fixup_error:
pr_err("Could not apply M.2 device tree overlay\n");
goto cleanup;
}
int ft_board_setup(void *blob, struct bd_info *bd)
{
if (board_is_m2())
m2_fdt_fixup(blob);
return 0;
}
#endif
void spl_board_init(void)
{
}
#if CONFIG_IS_ENABLED(LED) && CONFIG_IS_ENABLED(SHOW_BOOT_PROGRESS)
/*
* Indicate any error or (accidental?) entering of CLI via the red status LED.
*/
void show_boot_progress(int progress)
{
struct udevice *dev;
int ret;
if ((progress < 0 && progress != -BOOTSTAGE_ID_NET_ETH_START) ||
progress == BOOTSTAGE_ID_ENTER_CLI_LOOP) {
ret = led_get_by_label("status-led-green", &dev);
if (ret == 0)
led_set_state(dev, LEDST_OFF);
ret = led_get_by_label("status-led-red", &dev);
if (ret == 0)
led_set_state(dev, LEDST_ON);
}
}
#endif
|