1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2008-2014 Freescale Semiconductor, Inc.
* Copyright 2021 NXP
*/
#include <common.h>
#ifdef CONFIG_PPC
#include <asm/fsl_law.h>
#endif
#include <div64.h>
#include <linux/delay.h>
#include <fsl_ddr.h>
#include <fsl_immap.h>
#include <log.h>
#include <asm/io.h>
#if defined(CONFIG_FSL_LSCH2) || defined(CONFIG_FSL_LSCH3) || \
defined(CONFIG_ARM)
#include <asm/arch/clock.h>
#endif
/* To avoid 64-bit full-divides, we factor this here */
#define ULL_2E12 2000000000000ULL
#define UL_5POW12 244140625UL
#define UL_2POW13 (1UL << 13)
#define ULL_8FS 0xFFFFFFFFULL
u32 fsl_ddr_get_version(unsigned int ctrl_num)
{
struct ccsr_ddr __iomem *ddr;
u32 ver_major_minor_errata;
switch (ctrl_num) {
case 0:
ddr = (void *)CFG_SYS_FSL_DDR_ADDR;
break;
#if defined(CFG_SYS_FSL_DDR2_ADDR) && (CONFIG_SYS_NUM_DDR_CTLRS > 1)
case 1:
ddr = (void *)CFG_SYS_FSL_DDR2_ADDR;
break;
#endif
#if defined(CFG_SYS_FSL_DDR3_ADDR) && (CONFIG_SYS_NUM_DDR_CTLRS > 2)
case 2:
ddr = (void *)CFG_SYS_FSL_DDR3_ADDR;
break;
#endif
#if defined(CONFIG_SYS_FSL_DDR4_ADDR) && (CONFIG_SYS_NUM_DDR_CTLRS > 3)
case 3:
ddr = (void *)CONFIG_SYS_FSL_DDR4_ADDR;
break;
#endif
default:
printf("%s unexpected ctrl_num = %u\n", __func__, ctrl_num);
return 0;
}
ver_major_minor_errata = (ddr_in32(&ddr->ip_rev1) & 0xFFFF) << 8;
ver_major_minor_errata |= (ddr_in32(&ddr->ip_rev2) & 0xFF00) >> 8;
return ver_major_minor_errata;
}
/*
* Round up mclk_ps to nearest 1 ps in memory controller code
* if the error is 0.5ps or more.
*
* If an imprecise data rate is too high due to rounding error
* propagation, compute a suitably rounded mclk_ps to compute
* a working memory controller configuration.
*/
unsigned int get_memory_clk_period_ps(const unsigned int ctrl_num)
{
unsigned int data_rate = get_ddr_freq(ctrl_num);
unsigned int result;
/* Round to nearest 10ps, being careful about 64-bit multiply/divide */
unsigned long long rem, mclk_ps = ULL_2E12;
if (data_rate) {
/* Now perform the big divide, the result fits in 32-bits */
rem = do_div(mclk_ps, data_rate);
result = (rem >= (data_rate >> 1)) ? mclk_ps + 1 : mclk_ps;
} else {
result = 0;
}
return result;
}
/* Convert picoseconds into DRAM clock cycles (rounding up if needed). */
unsigned int picos_to_mclk(const unsigned int ctrl_num, unsigned int picos)
{
unsigned long long clks, clks_rem;
unsigned long data_rate = get_ddr_freq(ctrl_num);
/* Short circuit for zero picos */
if (!picos)
return 0;
/* First multiply the time by the data rate (32x32 => 64) */
clks = picos * (unsigned long long)data_rate;
/*
* Now divide by 5^12 and track the 32-bit remainder, then divide
* by 2*(2^12) using shifts (and updating the remainder).
*/
clks_rem = do_div(clks, UL_5POW12);
clks_rem += (clks & (UL_2POW13-1)) * UL_5POW12;
clks >>= 13;
/* If we had a remainder greater than the 1ps error, then round up */
if (clks_rem > data_rate)
clks++;
/* Clamp to the maximum representable value */
if (clks > ULL_8FS)
clks = ULL_8FS;
return (unsigned int) clks;
}
unsigned int mclk_to_picos(const unsigned int ctrl_num, unsigned int mclk)
{
return get_memory_clk_period_ps(ctrl_num) * mclk;
}
#ifdef CONFIG_PPC
void
__fsl_ddr_set_lawbar(const common_timing_params_t *memctl_common_params,
unsigned int law_memctl,
unsigned int ctrl_num)
{
unsigned long long base = memctl_common_params->base_address;
unsigned long long size = memctl_common_params->total_mem;
/*
* If no DIMMs on this controller, do not proceed any further.
*/
if (!memctl_common_params->ndimms_present) {
return;
}
#if !defined(CONFIG_PHYS_64BIT)
if (base >= CFG_MAX_MEM_MAPPED)
return;
if ((base + size) >= CFG_MAX_MEM_MAPPED)
size = CFG_MAX_MEM_MAPPED - base;
#endif
if (set_ddr_laws(base, size, law_memctl) < 0) {
printf("%s: ERROR (ctrl #%d, TRGT ID=%x)\n", __func__, ctrl_num,
law_memctl);
return;
}
debug("setup ddr law base = 0x%llx, size 0x%llx, TRGT_ID 0x%x\n",
base, size, law_memctl);
}
__attribute__((weak, alias("__fsl_ddr_set_lawbar"))) void
fsl_ddr_set_lawbar(const common_timing_params_t *memctl_common_params,
unsigned int memctl_interleaved,
unsigned int ctrl_num);
#endif
void fsl_ddr_set_intl3r(const unsigned int granule_size)
{
#ifdef CONFIG_E6500
u32 *mcintl3r = (void *) (CONFIG_SYS_IMMR + 0x18004);
*mcintl3r = 0x80000000 | (granule_size & 0x1f);
debug("Enable MCINTL3R with granule size 0x%x\n", granule_size);
#endif
}
u32 fsl_ddr_get_intl3r(void)
{
u32 val = 0;
#ifdef CONFIG_E6500
u32 *mcintl3r = (void *) (CONFIG_SYS_IMMR + 0x18004);
val = *mcintl3r;
#endif
return val;
}
void print_ddr_info(unsigned int start_ctrl)
{
struct ccsr_ddr __iomem *ddr =
(struct ccsr_ddr __iomem *)(CFG_SYS_FSL_DDR_ADDR);
#if defined(CONFIG_E6500) && (CONFIG_SYS_NUM_DDR_CTLRS == 3)
u32 *mcintl3r = (void *) (CONFIG_SYS_IMMR + 0x18004);
#endif
#if (CONFIG_SYS_NUM_DDR_CTLRS > 1)
uint32_t cs0_config = ddr_in32(&ddr->cs0_config);
#endif
uint32_t sdram_cfg = ddr_in32(&ddr->sdram_cfg);
int cas_lat;
#if CONFIG_SYS_NUM_DDR_CTLRS >= 2
if ((!(sdram_cfg & SDRAM_CFG_MEM_EN)) ||
(start_ctrl == 1)) {
ddr = (void __iomem *)CFG_SYS_FSL_DDR2_ADDR;
sdram_cfg = ddr_in32(&ddr->sdram_cfg);
}
#endif
#if CONFIG_SYS_NUM_DDR_CTLRS >= 3
if ((!(sdram_cfg & SDRAM_CFG_MEM_EN)) ||
(start_ctrl == 2)) {
ddr = (void __iomem *)CFG_SYS_FSL_DDR3_ADDR;
sdram_cfg = ddr_in32(&ddr->sdram_cfg);
}
#endif
if (!(sdram_cfg & SDRAM_CFG_MEM_EN)) {
puts(" (DDR not enabled)\n");
return;
}
puts(" (DDR");
switch ((sdram_cfg & SDRAM_CFG_SDRAM_TYPE_MASK) >>
SDRAM_CFG_SDRAM_TYPE_SHIFT) {
case SDRAM_TYPE_DDR1:
puts("1");
break;
case SDRAM_TYPE_DDR2:
puts("2");
break;
case SDRAM_TYPE_DDR3:
puts("3");
break;
case SDRAM_TYPE_DDR4:
puts("4");
break;
default:
puts("?");
break;
}
if (sdram_cfg & SDRAM_CFG_32_BE)
puts(", 32-bit");
else if (sdram_cfg & SDRAM_CFG_16_BE)
puts(", 16-bit");
else
puts(", 64-bit");
/* Calculate CAS latency based on timing cfg values */
cas_lat = ((ddr_in32(&ddr->timing_cfg_1) >> 16) & 0xf);
if (fsl_ddr_get_version(0) <= 0x40400)
cas_lat += 1;
else
cas_lat += 2;
cas_lat += ((ddr_in32(&ddr->timing_cfg_3) >> 12) & 3) << 4;
printf(", CL=%d", cas_lat >> 1);
if (cas_lat & 0x1)
puts(".5");
if (sdram_cfg & SDRAM_CFG_ECC_EN)
puts(", ECC on)");
else
puts(", ECC off)");
#if (CONFIG_SYS_NUM_DDR_CTLRS == 3)
#ifdef CONFIG_E6500
if (*mcintl3r & 0x80000000) {
puts("\n");
puts(" DDR Controller Interleaving Mode: ");
switch (*mcintl3r & 0x1f) {
case FSL_DDR_3WAY_1KB_INTERLEAVING:
puts("3-way 1KB");
break;
case FSL_DDR_3WAY_4KB_INTERLEAVING:
puts("3-way 4KB");
break;
case FSL_DDR_3WAY_8KB_INTERLEAVING:
puts("3-way 8KB");
break;
default:
puts("3-way UNKNOWN");
break;
}
}
#endif
#endif
#if (CONFIG_SYS_NUM_DDR_CTLRS >= 2)
if ((cs0_config & 0x20000000) && (start_ctrl == 0)) {
puts("\n");
puts(" DDR Controller Interleaving Mode: ");
switch ((cs0_config >> 24) & 0xf) {
case FSL_DDR_256B_INTERLEAVING:
puts("256B");
break;
case FSL_DDR_CACHE_LINE_INTERLEAVING:
puts("cache line");
break;
case FSL_DDR_PAGE_INTERLEAVING:
puts("page");
break;
case FSL_DDR_BANK_INTERLEAVING:
puts("bank");
break;
case FSL_DDR_SUPERBANK_INTERLEAVING:
puts("super-bank");
break;
default:
puts("invalid");
break;
}
}
#endif
if ((sdram_cfg >> 8) & 0x7f) {
puts("\n");
puts(" DDR Chip-Select Interleaving Mode: ");
switch(sdram_cfg >> 8 & 0x7f) {
case FSL_DDR_CS0_CS1_CS2_CS3:
puts("CS0+CS1+CS2+CS3");
break;
case FSL_DDR_CS0_CS1:
puts("CS0+CS1");
break;
case FSL_DDR_CS2_CS3:
puts("CS2+CS3");
break;
case FSL_DDR_CS0_CS1_AND_CS2_CS3:
puts("CS0+CS1 and CS2+CS3");
break;
default:
puts("invalid");
break;
}
}
}
void __weak detail_board_ddr_info(void)
{
print_ddr_info(0);
}
void board_add_ram_info(int use_default)
{
detail_board_ddr_info();
}
#ifdef CONFIG_FSL_DDR_SYNC_REFRESH
#define DDRC_DEBUG20_INIT_DONE 0x80000000
#define DDRC_DEBUG2_RF 0x00000040
void fsl_ddr_sync_memctl_refresh(unsigned int first_ctrl,
unsigned int last_ctrl)
{
unsigned int i;
u32 ddrc_debug20;
u32 ddrc_debug2[CONFIG_SYS_NUM_DDR_CTLRS] = {};
u32 *ddrc_debug2_p[CONFIG_SYS_NUM_DDR_CTLRS] = {};
struct ccsr_ddr __iomem *ddr;
for (i = first_ctrl; i <= last_ctrl; i++) {
switch (i) {
case 0:
ddr = (void *)CFG_SYS_FSL_DDR_ADDR;
break;
#if defined(CFG_SYS_FSL_DDR2_ADDR) && (CONFIG_SYS_NUM_DDR_CTLRS > 1)
case 1:
ddr = (void *)CFG_SYS_FSL_DDR2_ADDR;
break;
#endif
#if defined(CFG_SYS_FSL_DDR3_ADDR) && (CONFIG_SYS_NUM_DDR_CTLRS > 2)
case 2:
ddr = (void *)CFG_SYS_FSL_DDR3_ADDR;
break;
#endif
#if defined(CONFIG_SYS_FSL_DDR4_ADDR) && (CONFIG_SYS_NUM_DDR_CTLRS > 3)
case 3:
ddr = (void *)CONFIG_SYS_FSL_DDR4_ADDR;
break;
#endif
default:
printf("%s unexpected ctrl = %u\n", __func__, i);
return;
}
ddrc_debug20 = ddr_in32(&ddr->debug[19]);
ddrc_debug2_p[i] = &ddr->debug[1];
while (!(ddrc_debug20 & DDRC_DEBUG20_INIT_DONE)) {
/* keep polling until DDRC init is done */
udelay(100);
ddrc_debug20 = ddr_in32(&ddr->debug[19]);
}
ddrc_debug2[i] = ddr_in32(&ddr->debug[1]) | DDRC_DEBUG2_RF;
}
/*
* Sync refresh
* This is put together to make sure the refresh reqeusts are sent
* closely to each other.
*/
for (i = first_ctrl; i <= last_ctrl; i++)
ddr_out32(ddrc_debug2_p[i], ddrc_debug2[i]);
}
#endif /* CONFIG_FSL_DDR_SYNC_REFRESH */
void remove_unused_controllers(fsl_ddr_info_t *info)
{
#ifdef CONFIG_SYS_FSL_HAS_CCN504
int i;
u64 nodeid;
void *hnf_sam_ctrl = (void *)(CCI_HN_F_0_BASE + CCN_HN_F_SAM_CTL);
bool ddr0_used = false;
bool ddr1_used = false;
for (i = 0; i < 8; i++) {
nodeid = in_le64(hnf_sam_ctrl) & CCN_HN_F_SAM_NODEID_MASK;
if (nodeid == CCN_HN_F_SAM_NODEID_DDR0) {
ddr0_used = true;
} else if (nodeid == CCN_HN_F_SAM_NODEID_DDR1) {
ddr1_used = true;
} else {
printf("Unknown nodeid in HN-F SAM control: 0x%llx\n",
nodeid);
}
hnf_sam_ctrl += (CCI_HN_F_1_BASE - CCI_HN_F_0_BASE);
}
if (!ddr0_used && !ddr1_used) {
printf("Invalid configuration in HN-F SAM control\n");
return;
}
if (!ddr0_used && info->first_ctrl == 0) {
info->first_ctrl = 1;
info->num_ctrls = 1;
debug("First DDR controller disabled\n");
return;
}
if (!ddr1_used && info->first_ctrl + info->num_ctrls > 1) {
info->num_ctrls = 1;
debug("Second DDR controller disabled\n");
}
#endif
}
|