1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
|
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2018-2019 NXP
*/
#include <common.h>
#include <errno.h>
#include <log.h>
#include <asm/io.h>
#include <asm/arch/ddr.h>
#include <asm/arch/clock.h>
#include <asm/arch/sys_proto.h>
static unsigned int g_cdd_rr_max[4];
static unsigned int g_cdd_rw_max[4];
static unsigned int g_cdd_wr_max[4];
static unsigned int g_cdd_ww_max[4];
void ddr_cfg_umctl2(struct dram_cfg_param *ddrc_cfg, int num)
{
int i = 0;
for (i = 0; i < num; i++) {
reg32_write(ddrc_cfg->reg, ddrc_cfg->val);
ddrc_cfg++;
}
}
#ifdef CONFIG_IMX8M_DRAM_INLINE_ECC
void ddrc_inline_ecc_scrub(unsigned int start_address,
unsigned int range_address)
{
unsigned int tmp;
/* Step1: Enable quasi-dynamic programming */
reg32_write(DDRC_SWCTL(0), 0x00000000);
/* Step2: Set ECCCFG1.ecc_parity_region_lock to 1 */
reg32setbit(DDRC_ECCCFG1(0), 0x4);
/* Step3: Block the AXI ports from taking the transaction */
reg32_write(DDRC_PCTRL_0(0), 0x0);
/* Step4: Set scrub start address */
reg32_write(DDRC_SBRSTART0(0), start_address);
/* Step5: Set scrub range address */
reg32_write(DDRC_SBRRANGE0(0), range_address);
/* Step6: Set scrub_mode to write */
reg32_write(DDRC_SBRCTL(0), 0x00000014);
/* Step7: Set the desired pattern through SBRWDATA0 registers */
reg32_write(DDRC_SBRWDATA0(0), 0x55aa55aa);
/* Step8: Enable the SBR by programming SBRCTL.scrub_en=1 */
reg32setbit(DDRC_SBRCTL(0), 0x0);
/* Step9: Poll SBRSTAT.scrub_done=1 */
tmp = reg32_read(DDRC_SBRSTAT(0));
while (tmp != 0x00000002)
tmp = reg32_read(DDRC_SBRSTAT(0)) & 0x2;
/* Step10: Poll SBRSTAT.scrub_busy=0 */
tmp = reg32_read(DDRC_SBRSTAT(0));
while (tmp != 0x0)
tmp = reg32_read(DDRC_SBRSTAT(0)) & 0x1;
/* Step11: Disable SBR by programming SBRCTL.scrub_en=0 */
clrbits_le32(DDRC_SBRCTL(0), 0x1);
/* Step12: Prepare for normal scrub operation(Read) and set scrub_interval*/
reg32_write(DDRC_SBRCTL(0), 0x100);
/* Step13: Enable the SBR by programming SBRCTL.scrub_en=1 */
reg32_write(DDRC_SBRCTL(0), 0x101);
/* Step14: Enable AXI ports by programming */
reg32_write(DDRC_PCTRL_0(0), 0x1);
/* Step15: Disable quasi-dynamic programming */
reg32_write(DDRC_SWCTL(0), 0x00000001);
}
void ddrc_inline_ecc_scrub_end(unsigned int start_address,
unsigned int range_address)
{
/* Step1: Enable quasi-dynamic programming */
reg32_write(DDRC_SWCTL(0), 0x00000000);
/* Step2: Block the AXI ports from taking the transaction */
reg32_write(DDRC_PCTRL_0(0), 0x0);
/* Step3: Set scrub start address */
reg32_write(DDRC_SBRSTART0(0), start_address);
/* Step4: Set scrub range address */
reg32_write(DDRC_SBRRANGE0(0), range_address);
/* Step5: Disable SBR by programming SBRCTL.scrub_en=0 */
clrbits_le32(DDRC_SBRCTL(0), 0x1);
/* Step6: Prepare for normal scrub operation(Read) and set scrub_interval */
reg32_write(DDRC_SBRCTL(0), 0x100);
/* Step7: Enable the SBR by programming SBRCTL.scrub_en=1 */
reg32_write(DDRC_SBRCTL(0), 0x101);
/* Step8: Enable AXI ports by programming */
reg32_write(DDRC_PCTRL_0(0), 0x1);
/* Step9: Disable quasi-dynamic programming */
reg32_write(DDRC_SWCTL(0), 0x00000001);
}
#endif
void __weak board_dram_ecc_scrub(void)
{
}
void lpddr4_mr_write(unsigned int mr_rank, unsigned int mr_addr,
unsigned int mr_data)
{
unsigned int tmp;
/*
* 1. Poll MRSTAT.mr_wr_busy until it is 0.
* This checks that there is no outstanding MR transaction.
* No writes should be performed to MRCTRL0 and MRCTRL1 if
* MRSTAT.mr_wr_busy = 1.
*/
do {
tmp = reg32_read(DDRC_MRSTAT(0));
} while (tmp & 0x1);
/*
* 2. Write the MRCTRL0.mr_type, MRCTRL0.mr_addr, MRCTRL0.mr_rank and
* (for MRWs) MRCTRL1.mr_data to define the MR transaction.
*/
reg32_write(DDRC_MRCTRL0(0), (mr_rank << 4));
reg32_write(DDRC_MRCTRL1(0), (mr_addr << 8) | mr_data);
reg32setbit(DDRC_MRCTRL0(0), 31);
}
unsigned int lpddr4_mr_read(unsigned int mr_rank, unsigned int mr_addr)
{
unsigned int tmp;
reg32_write(DRC_PERF_MON_MRR0_DAT(0), 0x1);
do {
tmp = reg32_read(DDRC_MRSTAT(0));
} while (tmp & 0x1);
reg32_write(DDRC_MRCTRL0(0), (mr_rank << 4) | 0x1);
reg32_write(DDRC_MRCTRL1(0), (mr_addr << 8));
reg32setbit(DDRC_MRCTRL0(0), 31);
do {
tmp = reg32_read(DRC_PERF_MON_MRR0_DAT(0));
} while ((tmp & 0x8) == 0);
tmp = reg32_read(DRC_PERF_MON_MRR1_DAT(0));
reg32_write(DRC_PERF_MON_MRR0_DAT(0), 0x4);
while (tmp) { //try to find a significant byte in the word
if (tmp & 0xff) {
tmp &= 0xff;
break;
}
tmp >>= 8;
}
return tmp;
}
static unsigned int look_for_max(unsigned int data[], unsigned int addr_start,
unsigned int addr_end)
{
unsigned int i, imax = 0;
for (i = addr_start; i <= addr_end; i++) {
if (((data[i] >> 7) == 0) && data[i] > imax)
imax = data[i];
}
return imax;
}
void get_trained_CDD(u32 fsp)
{
unsigned int i, ddr_type, tmp;
unsigned int cdd_cha[12], cdd_chb[12];
unsigned int cdd_cha_rr_max, cdd_cha_rw_max, cdd_cha_wr_max, cdd_cha_ww_max;
unsigned int cdd_chb_rr_max, cdd_chb_rw_max, cdd_chb_wr_max, cdd_chb_ww_max;
ddr_type = reg32_read(DDRC_MSTR(0)) & 0x3f;
if (ddr_type == 0x20) {
for (i = 0; i < 6; i++) {
tmp = reg32_read(IP2APB_DDRPHY_IPS_BASE_ADDR(0) + (0x54013 + i) * 4);
cdd_cha[i * 2] = tmp & 0xff;
cdd_cha[i * 2 + 1] = (tmp >> 8) & 0xff;
}
for (i = 0; i < 7; i++) {
tmp = reg32_read(IP2APB_DDRPHY_IPS_BASE_ADDR(0) + (0x5402c + i) * 4);
if (i == 0) {
cdd_cha[0] = (tmp >> 8) & 0xff;
} else if (i == 6) {
cdd_cha[11] = tmp & 0xff;
} else {
cdd_chb[i * 2 - 1] = tmp & 0xff;
cdd_chb[i * 2] = (tmp >> 8) & 0xff;
}
}
cdd_cha_rr_max = look_for_max(cdd_cha, 0, 1);
cdd_cha_rw_max = look_for_max(cdd_cha, 2, 5);
cdd_cha_wr_max = look_for_max(cdd_cha, 6, 9);
cdd_cha_ww_max = look_for_max(cdd_cha, 10, 11);
cdd_chb_rr_max = look_for_max(cdd_chb, 0, 1);
cdd_chb_rw_max = look_for_max(cdd_chb, 2, 5);
cdd_chb_wr_max = look_for_max(cdd_chb, 6, 9);
cdd_chb_ww_max = look_for_max(cdd_chb, 10, 11);
g_cdd_rr_max[fsp] =
cdd_cha_rr_max > cdd_chb_rr_max ? cdd_cha_rr_max : cdd_chb_rr_max;
g_cdd_rw_max[fsp] =
cdd_cha_rw_max > cdd_chb_rw_max ? cdd_cha_rw_max : cdd_chb_rw_max;
g_cdd_wr_max[fsp] =
cdd_cha_wr_max > cdd_chb_wr_max ? cdd_cha_wr_max : cdd_chb_wr_max;
g_cdd_ww_max[fsp] =
cdd_cha_ww_max > cdd_chb_ww_max ? cdd_cha_ww_max : cdd_chb_ww_max;
} else {
unsigned int ddr4_cdd[64];
for (i = 0; i < 29; i++) {
tmp = reg32_read(IP2APB_DDRPHY_IPS_BASE_ADDR(0) + (0x54012 + i) * 4);
ddr4_cdd[i * 2] = tmp & 0xff;
ddr4_cdd[i * 2 + 1] = (tmp >> 8) & 0xff;
}
g_cdd_rr_max[fsp] = look_for_max(ddr4_cdd, 1, 12);
g_cdd_ww_max[fsp] = look_for_max(ddr4_cdd, 13, 24);
g_cdd_rw_max[fsp] = look_for_max(ddr4_cdd, 25, 40);
g_cdd_wr_max[fsp] = look_for_max(ddr4_cdd, 41, 56);
}
}
void update_umctl2_rank_space_setting(unsigned int pstat_num)
{
unsigned int i, ddr_type;
unsigned int addr_slot, rdata, tmp, tmp_t;
unsigned int ddrc_w2r, ddrc_r2w, ddrc_wr_gap, ddrc_rd_gap;
ddr_type = reg32_read(DDRC_MSTR(0)) & 0x3f;
for (i = 0; i < pstat_num; i++) {
addr_slot = i ? (i + 1) * 0x1000 : 0;
if (ddr_type == 0x20) {
/* update r2w:[13:8], w2r:[5:0] */
rdata = reg32_read(DDRC_DRAMTMG2(0) + addr_slot);
ddrc_w2r = rdata & 0x3f;
if (is_imx8mp())
tmp = ddrc_w2r + (g_cdd_wr_max[i] >> 1);
else
tmp = ddrc_w2r + (g_cdd_wr_max[i] >> 1) + 1;
ddrc_w2r = (tmp > 0x3f) ? 0x3f : tmp;
ddrc_r2w = (rdata >> 8) & 0x3f;
if (is_imx8mp())
tmp = ddrc_r2w + (g_cdd_rw_max[i] >> 1);
else
tmp = ddrc_r2w + (g_cdd_rw_max[i] >> 1) + 1;
ddrc_r2w = (tmp > 0x3f) ? 0x3f : tmp;
tmp_t = (rdata & 0xffffc0c0) | (ddrc_r2w << 8) | ddrc_w2r;
reg32_write((DDRC_DRAMTMG2(0) + addr_slot), tmp_t);
} else {
/* update w2r:[5:0] */
rdata = reg32_read(DDRC_DRAMTMG9(0) + addr_slot);
ddrc_w2r = rdata & 0x3f;
if (is_imx8mp())
tmp = ddrc_w2r + (g_cdd_wr_max[i] >> 1);
else
tmp = ddrc_w2r + (g_cdd_wr_max[i] >> 1) + 1;
ddrc_w2r = (tmp > 0x3f) ? 0x3f : tmp;
tmp_t = (rdata & 0xffffffc0) | ddrc_w2r;
reg32_write((DDRC_DRAMTMG9(0) + addr_slot), tmp_t);
/* update r2w:[13:8] */
rdata = reg32_read(DDRC_DRAMTMG2(0) + addr_slot);
ddrc_r2w = (rdata >> 8) & 0x3f;
if (is_imx8mp())
tmp = ddrc_r2w + (g_cdd_rw_max[i] >> 1);
else
tmp = ddrc_r2w + (g_cdd_rw_max[i] >> 1) + 1;
ddrc_r2w = (tmp > 0x3f) ? 0x3f : tmp;
tmp_t = (rdata & 0xffffc0ff) | (ddrc_r2w << 8);
reg32_write((DDRC_DRAMTMG2(0) + addr_slot), tmp_t);
}
if (!is_imx8mq()) {
/*
* update rankctl: wr_gap:11:8; rd:gap:7:4; quasi-dymic, doc wrong(static)
*/
rdata = reg32_read(DDRC_RANKCTL(0) + addr_slot);
ddrc_wr_gap = (rdata >> 8) & 0xf;
if (is_imx8mp())
tmp = ddrc_wr_gap + (g_cdd_ww_max[i] >> 1);
else
tmp = ddrc_wr_gap + (g_cdd_ww_max[i] >> 1) + 1;
ddrc_wr_gap = (tmp > 0xf) ? 0xf : tmp;
ddrc_rd_gap = (rdata >> 4) & 0xf;
if (is_imx8mp())
tmp = ddrc_rd_gap + (g_cdd_rr_max[i] >> 1);
else
tmp = ddrc_rd_gap + (g_cdd_rr_max[i] >> 1) + 1;
ddrc_rd_gap = (tmp > 0xf) ? 0xf : tmp;
tmp_t = (rdata & 0xfffff00f) | (ddrc_wr_gap << 8) | (ddrc_rd_gap << 4);
reg32_write((DDRC_RANKCTL(0) + addr_slot), tmp_t);
}
}
if (is_imx8mq()) {
/* update rankctl: wr_gap:11:8; rd:gap:7:4; quasi-dymic, doc wrong(static) */
rdata = reg32_read(DDRC_RANKCTL(0));
ddrc_wr_gap = (rdata >> 8) & 0xf;
tmp = ddrc_wr_gap + (g_cdd_ww_max[0] >> 1) + 1;
ddrc_wr_gap = (tmp > 0xf) ? 0xf : tmp;
ddrc_rd_gap = (rdata >> 4) & 0xf;
tmp = ddrc_rd_gap + (g_cdd_rr_max[0] >> 1) + 1;
ddrc_rd_gap = (tmp > 0xf) ? 0xf : tmp;
tmp_t = (rdata & 0xfffff00f) | (ddrc_wr_gap << 8) | (ddrc_rd_gap << 4);
reg32_write(DDRC_RANKCTL(0), tmp_t);
}
}
int ddr_init(struct dram_timing_info *dram_timing)
{
unsigned int tmp, initial_drate, target_freq;
int ret;
debug("DDRINFO: start DRAM init\n");
/* Step1: Follow the power up procedure */
if (is_imx8mq()) {
reg32_write(SRC_DDRC_RCR_ADDR + 0x04, 0x8F00000F);
reg32_write(SRC_DDRC_RCR_ADDR, 0x8F00000F);
reg32_write(SRC_DDRC_RCR_ADDR + 0x04, 0x8F000000);
} else {
reg32_write(SRC_DDRC_RCR_ADDR, 0x8F00001F);
reg32_write(SRC_DDRC_RCR_ADDR, 0x8F00000F);
}
debug("DDRINFO: cfg clk\n");
/* change the clock source of dram_apb_clk_root: source 4 800MHz /4 = 200MHz */
clock_set_target_val(DRAM_APB_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(4) |
CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV4));
/* disable iso */
reg32_write(0x303A00EC, 0x0000ffff); /* PGC_CPU_MAPPING */
reg32setbit(0x303A00F8, 5); /* PU_PGC_SW_PUP_REQ */
initial_drate = dram_timing->fsp_msg[0].drate;
/* default to the frequency point 0 clock */
ddrphy_init_set_dfi_clk(initial_drate);
/* D-aasert the presetn */
reg32_write(SRC_DDRC_RCR_ADDR, 0x8F000006);
/* Step2: Program the dwc_ddr_umctl2 registers */
debug("DDRINFO: ddrc config start\n");
ddr_cfg_umctl2(dram_timing->ddrc_cfg, dram_timing->ddrc_cfg_num);
debug("DDRINFO: ddrc config done\n");
/* Step3: De-assert reset signal(core_ddrc_rstn & aresetn_n) */
reg32_write(SRC_DDRC_RCR_ADDR, 0x8F000004);
reg32_write(SRC_DDRC_RCR_ADDR, 0x8F000000);
/*
* Step4: Disable auto-refreshes, self-refresh, powerdown, and
* assertion of dfi_dram_clk_disable by setting RFSHCTL3.dis_auto_refresh = 1,
* PWRCTL.powerdown_en = 0, and PWRCTL.selfref_en = 0, PWRCTL.en_dfi_dram_clk_disable = 0
*/
reg32_write(DDRC_DBG1(0), 0x00000000);
reg32_write(DDRC_RFSHCTL3(0), 0x0000001);
reg32_write(DDRC_PWRCTL(0), 0xa0);
/* if ddr type is LPDDR4, do it */
tmp = reg32_read(DDRC_MSTR(0));
if (tmp & (0x1 << 5) && !is_imx8mn())
reg32_write(DDRC_DDR_SS_GPR0, 0x01); /* LPDDR4 mode */
/* determine the initial boot frequency */
target_freq = reg32_read(DDRC_MSTR2(0)) & 0x3;
target_freq = (tmp & (0x1 << 29)) ? target_freq : 0x0;
/* Step5: Set SWCT.sw_done to 0 */
reg32_write(DDRC_SWCTL(0), 0x00000000);
/* Set the default boot frequency point */
clrsetbits_le32(DDRC_DFIMISC(0), (0x1f << 8), target_freq << 8);
/* Step6: Set DFIMISC.dfi_init_complete_en to 0 */
clrbits_le32(DDRC_DFIMISC(0), 0x1);
/* Step7: Set SWCTL.sw_done to 1; need to polling SWSTAT.sw_done_ack */
reg32_write(DDRC_SWCTL(0), 0x00000001);
do {
tmp = reg32_read(DDRC_SWSTAT(0));
} while ((tmp & 0x1) == 0x0);
/*
* Step8 ~ Step13: Start PHY initialization and training by
* accessing relevant PUB registers
*/
debug("DDRINFO:ddrphy config start\n");
ret = ddr_cfg_phy(dram_timing);
if (ret)
return ret;
debug("DDRINFO: ddrphy config done\n");
/*
* step14 CalBusy.0 =1, indicates the calibrator is actively
* calibrating. Wait Calibrating done.
*/
do {
tmp = reg32_read(DDRPHY_CalBusy(0));
} while ((tmp & 0x1));
debug("DDRINFO:ddrphy calibration done\n");
/* Step15: Set SWCTL.sw_done to 0 */
reg32_write(DDRC_SWCTL(0), 0x00000000);
/* Apply rank-to-rank workaround */
update_umctl2_rank_space_setting(dram_timing->fsp_msg_num - 1);
/* Step16: Set DFIMISC.dfi_init_start to 1 */
setbits_le32(DDRC_DFIMISC(0), (0x1 << 5));
/* Step17: Set SWCTL.sw_done to 1; need to polling SWSTAT.sw_done_ack */
reg32_write(DDRC_SWCTL(0), 0x00000001);
do {
tmp = reg32_read(DDRC_SWSTAT(0));
} while ((tmp & 0x1) == 0x0);
/* Step18: Polling DFISTAT.dfi_init_complete = 1 */
do {
tmp = reg32_read(DDRC_DFISTAT(0));
} while ((tmp & 0x1) == 0x0);
/* Step19: Set SWCTL.sw_done to 0 */
reg32_write(DDRC_SWCTL(0), 0x00000000);
/* Step20: Set DFIMISC.dfi_init_start to 0 */
clrbits_le32(DDRC_DFIMISC(0), (0x1 << 5));
/* Step21: optional */
/* Step22: Set DFIMISC.dfi_init_complete_en to 1 */
setbits_le32(DDRC_DFIMISC(0), 0x1);
/* Step23: Set PWRCTL.selfref_sw to 0 */
clrbits_le32(DDRC_PWRCTL(0), (0x1 << 5));
/* Step24: Set SWCTL.sw_done to 1; need polling SWSTAT.sw_done_ack */
reg32_write(DDRC_SWCTL(0), 0x00000001);
do {
tmp = reg32_read(DDRC_SWSTAT(0));
} while ((tmp & 0x1) == 0x0);
/* Step25: Wait for dwc_ddr_umctl2 to move to normal operating mode by monitoring
* STAT.operating_mode signal */
do {
tmp = reg32_read(DDRC_STAT(0));
} while ((tmp & 0x3) != 0x1);
/* Step26: Set back register in Step4 to the original values if desired */
reg32_write(DDRC_RFSHCTL3(0), 0x0000000);
/* enable port 0 */
reg32_write(DDRC_PCTRL_0(0), 0x00000001);
debug("DDRINFO: ddrmix config done\n");
board_dram_ecc_scrub();
/* enable selfref_en by default */
setbits_le32(DDRC_PWRCTL(0), 0x1);
/* save the dram timing config into memory */
dram_config_save(dram_timing, CONFIG_SAVED_DRAM_TIMING_BASE);
return 0;
}
ulong ddrphy_addr_remap(uint32_t paddr_apb_from_ctlr)
{
return 4 * paddr_apb_from_ctlr;
}
|