~funderscore blog cgit wiki get in touch
aboutsummaryrefslogtreecommitdiff
blob: 2854117760969bb1fcdc7a7620b8e2d159487a78 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
// SPDX-License-Identifier: GPL-2.0+
/*
 * LPC32xx MLC NAND flash controller driver
 *
 * (C) Copyright 2014 3ADEV <http://3adev.com>
 * Written by Albert ARIBAUD <albert.aribaud@3adev.fr>
 *
 * NOTE:
 *
 * The MLC NAND flash controller provides hardware Reed-Solomon ECC
 * covering in- and out-of-band data together. Therefore, in- and out-
 * of-band data must be written together in order to have a valid ECC.
 *
 * Consequently, pages with meaningful in-band data are written with
 * blank (all-ones) out-of-band data and a valid ECC, and any later
 * out-of-band data write will void the ECC.
 *
 * Therefore, code which reads such late-written out-of-band data
 * should not rely on the ECC validity.
 */

#include <common.h>
#include <nand.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/mtd/rawnand.h>
#include <asm/io.h>
#include <nand.h>
#include <asm/arch/clk.h>
#include <asm/arch/sys_proto.h>

/*
 * MLC NAND controller registers.
 */
struct lpc32xx_nand_mlc_registers {
	u8 buff[32768]; /* controller's serial data buffer */
	u8 data[32768]; /* NAND's raw data buffer */
	u32 cmd;
	u32 addr;
	u32 ecc_enc_reg;
	u32 ecc_dec_reg;
	u32 ecc_auto_enc_reg;
	u32 ecc_auto_dec_reg;
	u32 rpr;
	u32 wpr;
	u32 rubp;
	u32 robp;
	u32 sw_wp_add_low;
	u32 sw_wp_add_hig;
	u32 icr;
	u32 time_reg;
	u32 irq_mr;
	u32 irq_sr;
	u32 lock_pr;
	u32 isr;
	u32 ceh;
};

/* LOCK_PR register defines */
#define LOCK_PR_UNLOCK_KEY 0x0000A25E  /* Magic unlock value */

/* ICR defines */
#define ICR_LARGE_BLOCKS 0x00000004	/* configure for 2KB blocks */
#define ICR_ADDR4        0x00000002	/* configure for 4-word addrs */

/* CEH defines */
#define CEH_NORMAL_CE  0x00000001	/* do not force CE ON */

/* ISR register defines */
#define ISR_NAND_READY        0x00000001
#define ISR_CONTROLLER_READY  0x00000002
#define ISR_ECC_READY         0x00000004
#define ISR_DECODER_ERRORS(s) ((((s) >> 4) & 3)+1)
#define ISR_DECODER_FAILURE   0x00000040
#define ISR_DECODER_ERROR     0x00000008

/* time-out for NAND chip / controller loops, in us */
#define LPC32X_NAND_TIMEOUT 5000

/*
 * There is a single instance of the NAND MLC controller
 */

static struct lpc32xx_nand_mlc_registers __iomem *lpc32xx_nand_mlc_registers
	= (struct lpc32xx_nand_mlc_registers __iomem *)MLC_NAND_BASE;

#if !defined(CFG_SYS_MAX_NAND_CHIPS)
#define CFG_SYS_MAX_NAND_CHIPS	1
#endif

#define clkdiv(v, w, o) (((1+(clk/v)) & w) << o)

/**
 * OOB data in each small page are 6 'free' then 10 ECC bytes.
 * To make things easier, when reading large pages, the four pages'
 * 'free' OOB bytes are grouped in the first 24 bytes of the OOB buffer,
 * while the the four ECC bytes are groupe in its last 40 bytes.
 *
 * The struct below represents how free vs ecc oob bytes are stored
 * in the buffer.
 *
 * Note: the OOB bytes contain the bad block marker at offsets 0 and 1.
 */

struct lpc32xx_oob {
	struct {
		uint8_t free_oob_bytes[6];
	} free[4];
	struct {
		uint8_t ecc_oob_bytes[10];
	} ecc[4];
};

/*
 * Initialize the controller
 */

static void lpc32xx_nand_init(void)
{
	unsigned int clk;

	/* Configure controller for no software write protection, x8 bus
	   width, large block device, and 4 address words */

	/* unlock controller registers with magic key */
	writel(LOCK_PR_UNLOCK_KEY,
	       &lpc32xx_nand_mlc_registers->lock_pr);

	/* enable large blocks and large NANDs */
	writel(ICR_LARGE_BLOCKS | ICR_ADDR4,
	       &lpc32xx_nand_mlc_registers->icr);

	/* Make sure MLC interrupts are disabled */
	writel(0, &lpc32xx_nand_mlc_registers->irq_mr);

	/* Normal chip enable operation */
	writel(CEH_NORMAL_CE,
	       &lpc32xx_nand_mlc_registers->ceh);

	/* Setup NAND timing */
	clk = get_hclk_clk_rate();

	writel(
		clkdiv(CFG_LPC32XX_NAND_MLC_TCEA_DELAY, 0x03, 24) |
		clkdiv(CFG_LPC32XX_NAND_MLC_BUSY_DELAY, 0x1F, 19) |
		clkdiv(CFG_LPC32XX_NAND_MLC_NAND_TA,    0x07, 16) |
		clkdiv(CFG_LPC32XX_NAND_MLC_RD_HIGH,    0x0F, 12) |
		clkdiv(CFG_LPC32XX_NAND_MLC_RD_LOW,     0x0F, 8) |
		clkdiv(CFG_LPC32XX_NAND_MLC_WR_HIGH,    0x0F, 4) |
		clkdiv(CFG_LPC32XX_NAND_MLC_WR_LOW,     0x0F, 0),
		&lpc32xx_nand_mlc_registers->time_reg);
}

#if !defined(CONFIG_SPL_BUILD)

/**
 * lpc32xx_cmd_ctrl - write command to either cmd or data register
 */

static void lpc32xx_cmd_ctrl(struct mtd_info *mtd, int cmd,
				   unsigned int ctrl)
{
	if (cmd == NAND_CMD_NONE)
		return;

	if (ctrl & NAND_CLE)
		writeb(cmd & 0Xff, &lpc32xx_nand_mlc_registers->cmd);
	else if (ctrl & NAND_ALE)
		writeb(cmd & 0Xff, &lpc32xx_nand_mlc_registers->addr);
}

/**
 * lpc32xx_read_byte - read a byte from the NAND
 * @mtd:	MTD device structure
 */

static uint8_t lpc32xx_read_byte(struct mtd_info *mtd)
{
	return readb(&lpc32xx_nand_mlc_registers->data);
}

/**
 * lpc32xx_dev_ready - test if NAND device (actually controller) is ready
 * @mtd:	MTD device structure
 * @mode:	mode to set the ECC HW to.
 */

static int lpc32xx_dev_ready(struct mtd_info *mtd)
{
	/* means *controller* ready for us */
	int status = readl(&lpc32xx_nand_mlc_registers->isr);
	return status & ISR_CONTROLLER_READY;
}

/**
 * ECC layout -- this is needed whatever ECC mode we are using.
 * In a 2KB (4*512B) page, R/S codes occupy 40 (4*10) bytes.
 * To make U-Boot's life easier, we pack 'useable' OOB at the
 * front and R/S ECC at the back.
 */

static struct nand_ecclayout lpc32xx_largepage_ecclayout = {
	.eccbytes = 40,
	.eccpos = {24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
		   34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
		   44, 45, 46, 47, 48, 48, 50, 51, 52, 53,
		   54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
		   },
	.oobfree = {
		/* bytes 0 and 1 are used for the bad block marker */
		{
			.offset = 2,
			.length = 22
		},
	}
};

/**
 * lpc32xx_read_page_hwecc - read in- and out-of-band data with ECC
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: buffer to store read data
 * @oob_required: caller requires OOB data read to chip->oob_poi
 * @page: page number to read
 *
 * Use large block Auto Decode Read Mode(1) as described in User Manual
 * section 8.6.2.1.
 *
 * The initial Read Mode and Read Start commands are sent by the caller.
 *
 * ECC will be false if out-of-band data has been updated since in-band
 * data was initially written.
 */

static int lpc32xx_read_page_hwecc(struct mtd_info *mtd,
	struct nand_chip *chip, uint8_t *buf, int oob_required,
	int page)
{
	unsigned int i, status, timeout, err, max_bitflips = 0;
	struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi;

	/* go through all four small pages */
	for (i = 0; i < 4; i++) {
		/* start auto decode (reads 528 NAND bytes) */
		writel(0, &lpc32xx_nand_mlc_registers->ecc_auto_dec_reg);
		/* wait for controller to return to ready state */
		for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) {
			status = readl(&lpc32xx_nand_mlc_registers->isr);
			if (status & ISR_CONTROLLER_READY)
				break;
			udelay(1);
		}
		/* if decoder failed, return failure */
		if (status & ISR_DECODER_FAILURE)
			return -1;
		/* keep count of maximum bitflips performed */
		if (status & ISR_DECODER_ERROR) {
			err = ISR_DECODER_ERRORS(status);
			if (err > max_bitflips)
				max_bitflips = err;
		}
		/* copy first 512 bytes into buffer */
		memcpy(buf+512*i, lpc32xx_nand_mlc_registers->buff, 512);
		/* copy next 6 bytes at front of OOB buffer */
		memcpy(&oob->free[i], lpc32xx_nand_mlc_registers->buff, 6);
		/* copy last 10 bytes (R/S ECC) at back of OOB buffer */
		memcpy(&oob->ecc[i], lpc32xx_nand_mlc_registers->buff, 10);
	}
	return max_bitflips;
}

/**
 * lpc32xx_read_page_raw - read raw (in-band, out-of-band and ECC) data
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: buffer to store read data
 * @oob_required: caller requires OOB data read to chip->oob_poi
 * @page: page number to read
 *
 * Read NAND directly; can read pages with invalid ECC.
 */

static int lpc32xx_read_page_raw(struct mtd_info *mtd,
	struct nand_chip *chip, uint8_t *buf, int oob_required,
	int page)
{
	unsigned int i, status, timeout;
	struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi;

	/* when we get here we've already had the Read Mode(1) */

	/* go through all four small pages */
	for (i = 0; i < 4; i++) {
		/* wait for NAND to return to ready state */
		for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) {
			status = readl(&lpc32xx_nand_mlc_registers->isr);
			if (status & ISR_NAND_READY)
				break;
			udelay(1);
		}
		/* if NAND stalled, return failure */
		if (!(status & ISR_NAND_READY))
			return -1;
		/* copy first 512 bytes into buffer */
		memcpy(buf+512*i, lpc32xx_nand_mlc_registers->data, 512);
		/* copy next 6 bytes at front of OOB buffer */
		memcpy(&oob->free[i], lpc32xx_nand_mlc_registers->data, 6);
		/* copy last 10 bytes (R/S ECC) at back of OOB buffer */
		memcpy(&oob->ecc[i], lpc32xx_nand_mlc_registers->data, 10);
	}
	return 0;
}

/**
 * lpc32xx_read_oob - read out-of-band data
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @page: page number to read
 *
 * Read out-of-band data. User Manual section 8.6.4 suggests using Read
 * Mode(3) which the controller will turn into a Read Mode(1) internally
 * but nand_base.c will turn Mode(3) into Mode(0), so let's use Mode(0)
 * directly.
 *
 * ECC covers in- and out-of-band data and was written when out-of-band
 * data was blank. Therefore, if the out-of-band being read here is not
 * blank, then the ECC will be false and the read will return bitflips,
 * even in case of ECC failure where we will return 5 bitflips. The
 * caller should be prepared to handle this.
 */

static int lpc32xx_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
	int page)
{
	unsigned int i, status, timeout, err, max_bitflips = 0;
	struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi;

	/* No command was sent before calling read_oob() so send one */

	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);

	/* go through all four small pages */
	for (i = 0; i < 4; i++) {
		/* start auto decode (reads 528 NAND bytes) */
		writel(0, &lpc32xx_nand_mlc_registers->ecc_auto_dec_reg);
		/* wait for controller to return to ready state */
		for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) {
			status = readl(&lpc32xx_nand_mlc_registers->isr);
			if (status & ISR_CONTROLLER_READY)
				break;
			udelay(1);
		}
		/* if decoder failure, count 'one too many' bitflips */
		if (status & ISR_DECODER_FAILURE)
			max_bitflips = 5;
		/* keep count of maximum bitflips performed */
		if (status & ISR_DECODER_ERROR) {
			err = ISR_DECODER_ERRORS(status);
			if (err > max_bitflips)
				max_bitflips = err;
		}
		/* set read pointer to OOB area */
		writel(0, &lpc32xx_nand_mlc_registers->robp);
		/* copy next 6 bytes at front of OOB buffer */
		memcpy(&oob->free[i], lpc32xx_nand_mlc_registers->buff, 6);
		/* copy next 10 bytes (R/S ECC) at back of OOB buffer */
		memcpy(&oob->ecc[i], lpc32xx_nand_mlc_registers->buff, 10);
	}
	return max_bitflips;
}

/**
 * lpc32xx_write_page_hwecc - write in- and out-of-band data with ECC
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: data buffer
 * @oob_required: must write chip->oob_poi to OOB
 *
 * Use large block Auto Encode as per User Manual section 8.6.4.
 *
 * The initial Write Serial Input and final Auto Program commands are
 * sent by the caller.
 */

static int lpc32xx_write_page_hwecc(struct mtd_info *mtd,
	struct nand_chip *chip, const uint8_t *buf, int oob_required,
	int page)
{
	unsigned int i, status, timeout;
	struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi;

	/* when we get here we've already had the SEQIN */
	for (i = 0; i < 4; i++) {
		/* start encode (expects 518 writes to buff) */
		writel(0, &lpc32xx_nand_mlc_registers->ecc_enc_reg);
		/* copy first 512 bytes from buffer */
		memcpy(&lpc32xx_nand_mlc_registers->buff, buf+512*i, 512);
		/* copy next 6 bytes from OOB buffer -- excluding ECC */
		memcpy(&lpc32xx_nand_mlc_registers->buff, &oob->free[i], 6);
		/* wait for ECC to return to ready state */
		for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) {
			status = readl(&lpc32xx_nand_mlc_registers->isr);
			if (status & ISR_ECC_READY)
				break;
			udelay(1);
		}
		/* if ECC stalled, return failure */
		if (!(status & ISR_ECC_READY))
			return -1;
		/* Trigger auto encode (writes 528 bytes to NAND) */
		writel(0, &lpc32xx_nand_mlc_registers->ecc_auto_enc_reg);
		/* wait for controller to return to ready state */
		for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) {
			status = readl(&lpc32xx_nand_mlc_registers->isr);
			if (status & ISR_CONTROLLER_READY)
				break;
			udelay(1);
		}
		/* if controller stalled, return error */
		if (!(status & ISR_CONTROLLER_READY))
			return -1;
	}
	return 0;
}

/**
 * lpc32xx_write_page_raw - write raw (in-band, out-of-band and ECC) data
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: buffer to store read data
 * @oob_required: caller requires OOB data read to chip->oob_poi
 * @page: page number to read
 *
 * Use large block write but without encode.
 *
 * The initial Write Serial Input and final Auto Program commands are
 * sent by the caller.
 *
 * This function will write the full out-of-band data, including the
 * ECC area. Therefore, it can write pages with valid *or* invalid ECC.
 */

static int lpc32xx_write_page_raw(struct mtd_info *mtd,
	struct nand_chip *chip, const uint8_t *buf, int oob_required,
	int page)
{
	unsigned int i;
	struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi;

	/* when we get here we've already had the Read Mode(1) */
	for (i = 0; i < 4; i++) {
		/* copy first 512 bytes from buffer */
		memcpy(lpc32xx_nand_mlc_registers->buff, buf+512*i, 512);
		/* copy next 6 bytes into OOB buffer -- excluding ECC */
		memcpy(lpc32xx_nand_mlc_registers->buff, &oob->free[i], 6);
		/* copy next 10 bytes into OOB buffer -- that is 'ECC' */
		memcpy(lpc32xx_nand_mlc_registers->buff, &oob->ecc[i], 10);
	}
	return 0;
}

/**
 * lpc32xx_write_oob - write out-of-band data
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @page: page number to read
 *
 * Since ECC covers in- and out-of-band data, writing out-of-band data
 * with ECC will render the page ECC wrong -- or, if the page was blank,
 * then it will produce a good ECC but a later in-band data write will
 * render it wrong.
 *
 * Therefore, do not compute or write any ECC, and always return success.
 *
 * This implies that we do four writes, since non-ECC out-of-band data
 * are not contiguous in a large page.
 */

static int lpc32xx_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
	int page)
{
	/* update oob on all 4 subpages in sequence */
	unsigned int i, status, timeout;
	struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi;

	for (i = 0; i < 4; i++) {
		/* start data input */
		chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x200+0x210*i, page);
		/* copy 6 non-ECC out-of-band bytes directly into NAND */
		memcpy(lpc32xx_nand_mlc_registers->data, &oob->free[i], 6);
		/* program page */
		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
		/* wait for NAND to return to ready state */
		for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) {
			status = readl(&lpc32xx_nand_mlc_registers->isr);
			if (status & ISR_NAND_READY)
				break;
			udelay(1);
		}
		/* if NAND stalled, return error */
		if (!(status & ISR_NAND_READY))
			return -1;
	}
	return 0;
}

/**
 * lpc32xx_waitfunc - wait until a command is done
 * @mtd: MTD device structure
 * @chip: NAND chip structure
 *
 * Wait for controller and FLASH to both be ready.
 */

static int lpc32xx_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
{
	int status;
	unsigned int timeout;
	/* wait until both controller and NAND are ready */
	for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) {
		status = readl(&lpc32xx_nand_mlc_registers->isr);
		if ((status & (ISR_CONTROLLER_READY || ISR_NAND_READY))
		    == (ISR_CONTROLLER_READY || ISR_NAND_READY))
			break;
		udelay(1);
	}
	/* if controller or NAND stalled, return error */
	if ((status & (ISR_CONTROLLER_READY || ISR_NAND_READY))
	    != (ISR_CONTROLLER_READY || ISR_NAND_READY))
		return -1;
	/* write NAND status command */
	writel(NAND_CMD_STATUS, &lpc32xx_nand_mlc_registers->cmd);
	/* read back status and return it */
	return readb(&lpc32xx_nand_mlc_registers->data);
}

/*
 * We are self-initializing, so we need our own chip struct
 */

static struct nand_chip lpc32xx_chip;

/*
 * Initialize the controller
 */

void board_nand_init(void)
{
	struct mtd_info *mtd = nand_to_mtd(&lpc32xx_chip);
	int ret;

	/* Set all BOARDSPECIFIC (actually core-specific) fields  */

	lpc32xx_chip.IO_ADDR_R = &lpc32xx_nand_mlc_registers->buff;
	lpc32xx_chip.IO_ADDR_W = &lpc32xx_nand_mlc_registers->buff;
	lpc32xx_chip.cmd_ctrl = lpc32xx_cmd_ctrl;
	/* do not set init_size: nand_base.c will read sizes from chip */
	lpc32xx_chip.dev_ready = lpc32xx_dev_ready;
	/* do not set setup_read_retry: this is NAND-chip-specific */
	/* do not set chip_delay: we have dev_ready defined. */
	lpc32xx_chip.options |= NAND_NO_SUBPAGE_WRITE;

	/* Set needed ECC fields */

	lpc32xx_chip.ecc.mode = NAND_ECC_HW;
	lpc32xx_chip.ecc.layout = &lpc32xx_largepage_ecclayout;
	lpc32xx_chip.ecc.size = 512;
	lpc32xx_chip.ecc.bytes = 10;
	lpc32xx_chip.ecc.strength = 4;
	lpc32xx_chip.ecc.read_page = lpc32xx_read_page_hwecc;
	lpc32xx_chip.ecc.read_page_raw = lpc32xx_read_page_raw;
	lpc32xx_chip.ecc.write_page = lpc32xx_write_page_hwecc;
	lpc32xx_chip.ecc.write_page_raw = lpc32xx_write_page_raw;
	lpc32xx_chip.ecc.read_oob = lpc32xx_read_oob;
	lpc32xx_chip.ecc.write_oob = lpc32xx_write_oob;
	lpc32xx_chip.waitfunc = lpc32xx_waitfunc;

	lpc32xx_chip.read_byte = lpc32xx_read_byte; /* FIXME: NEEDED? */

	/* BBT options: read from last two pages */
	lpc32xx_chip.bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_LASTBLOCK
		| NAND_BBT_SCANLASTPAGE | NAND_BBT_SCAN2NDPAGE
		| NAND_BBT_WRITE;

	/* Initialize NAND interface */
	lpc32xx_nand_init();

	/* identify chip */
	ret = nand_scan_ident(mtd, CFG_SYS_MAX_NAND_CHIPS, NULL);
	if (ret) {
		pr_err("nand_scan_ident returned %i", ret);
		return;
	}

	/* finish scanning the chip */
	ret = nand_scan_tail(mtd);
	if (ret) {
		pr_err("nand_scan_tail returned %i", ret);
		return;
	}

	/* chip is good, register it */
	ret = nand_register(0, mtd);
	if (ret)
		pr_err("nand_register returned %i", ret);
}

#else /* defined(CONFIG_SPL_BUILD) */

void nand_init(void)
{
	/* enable NAND controller */
	lpc32xx_mlc_nand_init();
	/* initialize NAND controller */
	lpc32xx_nand_init();
}

void nand_deselect(void)
{
	/* nothing to do, but SPL requires this function */
}

static int read_single_page(uint8_t *dest, int page,
	struct lpc32xx_oob *oob)
{
	int status, i, timeout, err, max_bitflips = 0;

	/* enter read mode */
	writel(NAND_CMD_READ0, &lpc32xx_nand_mlc_registers->cmd);
	/* send column (lsb then MSB) and page (lsb to MSB) */
	writel(0, &lpc32xx_nand_mlc_registers->addr);
	writel(0, &lpc32xx_nand_mlc_registers->addr);
	writel(page & 0xff, &lpc32xx_nand_mlc_registers->addr);
	writel((page>>8) & 0xff, &lpc32xx_nand_mlc_registers->addr);
	writel((page>>16) & 0xff, &lpc32xx_nand_mlc_registers->addr);
	/* start reading */
	writel(NAND_CMD_READSTART, &lpc32xx_nand_mlc_registers->cmd);

	/* large page auto decode read */
	for (i = 0; i < 4; i++) {
		/* start auto decode (reads 528 NAND bytes) */
		writel(0, &lpc32xx_nand_mlc_registers->ecc_auto_dec_reg);
		/* wait for controller to return to ready state */
		for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) {
			status = readl(&lpc32xx_nand_mlc_registers->isr);
			if (status & ISR_CONTROLLER_READY)
				break;
			udelay(1);
		}
		/* if controller stalled, return error */
		if (!(status & ISR_CONTROLLER_READY))
			return -1;
		/* if decoder failure, return error */
		if (status & ISR_DECODER_FAILURE)
			return -1;
		/* keep count of maximum bitflips performed */
		if (status & ISR_DECODER_ERROR) {
			err = ISR_DECODER_ERRORS(status);
			if (err > max_bitflips)
				max_bitflips = err;
		}
		/* copy first 512 bytes into buffer */
		memcpy(dest+i*512, lpc32xx_nand_mlc_registers->buff, 512);
		/* copy next 6 bytes bytes into OOB buffer */
		memcpy(&oob->free[i], lpc32xx_nand_mlc_registers->buff, 6);
	}
	return max_bitflips;
}

/*
 * Load U-Boot signed image.
 * This loads an image from NAND, skipping bad blocks.
 * A block is declared bad if at least one of its readable pages has
 * a bad block marker in its OOB at position 0.
 * If all pages ion a block are unreadable, the block is considered
 * bad (i.e., assumed not to be part of the image) and skipped.
 *
 * IMPORTANT NOTE:
 *
 * If the first block of the image is fully unreadable, it will be
 * ignored and skipped as if it had been marked bad. If it was not
 * actually marked bad at the time of writing the image, the resulting
 * image loaded will lack a header and magic number. It could thus be
 * considered as a raw, headerless, image and SPL might erroneously
 * jump into it.
 *
 * In order to avoid this risk, LPC32XX-based boards which use this
 * driver MUST define CONFIG_SPL_PANIC_ON_RAW_IMAGE.
 */

#define BYTES_PER_PAGE 2048
#define PAGES_PER_BLOCK 64
#define BYTES_PER_BLOCK (BYTES_PER_PAGE * PAGES_PER_BLOCK)
#define PAGES_PER_CHIP_MAX 524288

int nand_spl_load_image(uint32_t offs, unsigned int size, void *dst)
{
	int bytes_left = size;
	int pages_left = DIV_ROUND_UP(size, BYTES_PER_PAGE);
	int blocks_left = DIV_ROUND_UP(size, BYTES_PER_BLOCK);
	int block = 0;
	int page = offs / BYTES_PER_PAGE;
	/* perform reads block by block */
	while (blocks_left) {
		/* compute first page number to read */
		void *block_page_dst = dst;
		/* read at most one block, possibly less */
		int block_bytes_left = bytes_left;
		if (block_bytes_left > BYTES_PER_BLOCK)
			block_bytes_left = BYTES_PER_BLOCK;
		/* keep track of good, failed, and "bad" pages */
		int block_pages_good = 0;
		int block_pages_bad = 0;
		int block_pages_err = 0;
		/* we shall read a full block of pages, maybe less */
		int block_pages_left = pages_left;
		if (block_pages_left > PAGES_PER_BLOCK)
			block_pages_left = PAGES_PER_BLOCK;
		int block_pages = block_pages_left;
		int block_page = page;
		/* while pages are left and the block is not known as bad */
		while ((block_pages > 0) && (block_pages_bad == 0)) {
			/* we will read OOB, too, for bad block markers */
			struct lpc32xx_oob oob;
			/* read page */
			int res = read_single_page(block_page_dst, block_page,
						   &oob);
			/* count readable pages */
			if (res >= 0) {
				/* this page is good */
				block_pages_good++;
				/* this page is bad */
				if ((oob.free[0].free_oob_bytes[0] != 0xff)
				    | (oob.free[0].free_oob_bytes[1] != 0xff))
					block_pages_bad++;
			} else
				/* count errors */
				block_pages_err++;
			/* we're done with this page */
			block_page++;
			block_page_dst += BYTES_PER_PAGE;
			if (block_pages)
				block_pages--;
		}
		/* a fully unreadable block is considered bad */
		if (block_pages_good == 0)
			block_pages_bad = block_pages_err;
		/* errors are fatal only in good blocks */
		if ((block_pages_err > 0) && (block_pages_bad == 0))
			return -1;
		/* we keep reads only of good blocks */
		if (block_pages_bad == 0) {
			dst += block_bytes_left;
			bytes_left -= block_bytes_left;
			pages_left -= block_pages_left;
			blocks_left--;
		}
		/* good or bad, we're done with this block */
		block++;
		page += PAGES_PER_BLOCK;
	}

	/* report success */
	return 0;
}

#endif /* CONFIG_SPL_BUILD */