1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
|
// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2018 Cisco Systems, Inc.
*
* Author: Thomas Fitzsimmons <fitzsim@fitzsim.org>
*/
#include <asm/global_data.h>
#include <asm/io.h>
#include <command.h>
#include <config.h>
#include <dm.h>
#include <errno.h>
#include <fdtdec.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <log.h>
#include <malloc.h>
#include <spi.h>
#include <time.h>
DECLARE_GLOBAL_DATA_PTR;
#define SPBR_MIN 8
#define BITS_PER_WORD 8
#define NUM_TXRAM 32
#define NUM_RXRAM 32
#define NUM_CDRAM 16
/* hif_mspi register structure. */
struct bcmstb_hif_mspi_regs {
u32 spcr0_lsb; /* 0x000 */
u32 spcr0_msb; /* 0x004 */
u32 spcr1_lsb; /* 0x008 */
u32 spcr1_msb; /* 0x00c */
u32 newqp; /* 0x010 */
u32 endqp; /* 0x014 */
u32 spcr2; /* 0x018 */
u32 reserved0; /* 0x01c */
u32 mspi_status; /* 0x020 */
u32 cptqp; /* 0x024 */
u32 spcr3; /* 0x028 */
u32 revision; /* 0x02c */
u32 reserved1[4]; /* 0x030 */
u32 txram[NUM_TXRAM]; /* 0x040 */
u32 rxram[NUM_RXRAM]; /* 0x0c0 */
u32 cdram[NUM_CDRAM]; /* 0x140 */
u32 write_lock; /* 0x180 */
};
/* hif_mspi masks. */
#define HIF_MSPI_SPCR2_CONT_AFTER_CMD_MASK 0x00000080
#define HIF_MSPI_SPCR2_SPE_MASK 0x00000040
#define HIF_MSPI_SPCR2_SPIFIE_MASK 0x00000020
#define HIF_MSPI_WRITE_LOCK_WRITE_LOCK_MASK 0x00000001
/* bspi offsets. */
#define BSPI_MAST_N_BOOT_CTRL 0x008
/* bspi_raf is not used in this driver. */
/* hif_spi_intr2 offsets and masks. */
#define HIF_SPI_INTR2_CPU_CLEAR 0x08
#define HIF_SPI_INTR2_CPU_MASK_SET 0x10
#define HIF_SPI_INTR2_CPU_MASK_CLEAR 0x14
#define HIF_SPI_INTR2_CPU_SET_MSPI_DONE_MASK 0x00000020
/* SPI transfer timeout in milliseconds. */
#define HIF_MSPI_WAIT 10
enum bcmstb_base_type {
HIF_MSPI,
BSPI,
HIF_SPI_INTR2,
CS_REG,
BASE_LAST,
};
struct bcmstb_spi_plat {
void *base[4];
};
struct bcmstb_spi_priv {
struct bcmstb_hif_mspi_regs *regs;
void *bspi;
void *hif_spi_intr2;
void *cs_reg;
int default_cs;
int curr_cs;
uint tx_slot;
uint rx_slot;
u8 saved_cmd[NUM_CDRAM];
uint saved_cmd_len;
void *saved_din_addr;
};
static int bcmstb_spi_of_to_plat(struct udevice *bus)
{
struct bcmstb_spi_plat *plat = dev_get_plat(bus);
const void *fdt = gd->fdt_blob;
int node = dev_of_offset(bus);
int ret = 0;
int i = 0;
struct fdt_resource resource = { 0 };
char *names[BASE_LAST] = { "hif_mspi", "bspi", "hif_spi_intr2",
"cs_reg" };
const phys_addr_t defaults[BASE_LAST] = { BCMSTB_HIF_MSPI_BASE,
BCMSTB_BSPI_BASE,
BCMSTB_HIF_SPI_INTR2,
BCMSTB_CS_REG };
for (i = 0; i < BASE_LAST; i++) {
plat->base[i] = (void *)defaults[i];
ret = fdt_get_named_resource(fdt, node, "reg", "reg-names",
names[i], &resource);
if (ret) {
printf("%s: Assuming BCMSTB SPI %s address 0x0x%p\n",
__func__, names[i], (void *)defaults[i]);
} else {
plat->base[i] = (void *)resource.start;
debug("BCMSTB SPI %s address: 0x0x%p\n",
names[i], (void *)plat->base[i]);
}
}
return 0;
}
static void bcmstb_spi_hw_set_parms(struct bcmstb_spi_priv *priv)
{
writel(SPBR_MIN, &priv->regs->spcr0_lsb);
writel(BITS_PER_WORD << 2 | SPI_MODE_3, &priv->regs->spcr0_msb);
}
static void bcmstb_spi_enable_interrupt(void *base, u32 mask)
{
void *reg = base + HIF_SPI_INTR2_CPU_MASK_CLEAR;
writel(readl(reg) | mask, reg);
readl(reg);
}
static void bcmstb_spi_disable_interrupt(void *base, u32 mask)
{
void *reg = base + HIF_SPI_INTR2_CPU_MASK_SET;
writel(readl(reg) | mask, reg);
readl(reg);
}
static void bcmstb_spi_clear_interrupt(void *base, u32 mask)
{
void *reg = base + HIF_SPI_INTR2_CPU_CLEAR;
writel(readl(reg) | mask, reg);
readl(reg);
}
static int bcmstb_spi_probe(struct udevice *bus)
{
struct bcmstb_spi_plat *plat = dev_get_plat(bus);
struct bcmstb_spi_priv *priv = dev_get_priv(bus);
priv->regs = plat->base[HIF_MSPI];
priv->bspi = plat->base[BSPI];
priv->hif_spi_intr2 = plat->base[HIF_SPI_INTR2];
priv->cs_reg = plat->base[CS_REG];
priv->default_cs = 0;
priv->curr_cs = -1;
priv->tx_slot = 0;
priv->rx_slot = 0;
memset(priv->saved_cmd, 0, NUM_CDRAM);
priv->saved_cmd_len = 0;
priv->saved_din_addr = NULL;
debug("spi_xfer: tx regs: 0x%p\n", &priv->regs->txram[0]);
debug("spi_xfer: rx regs: 0x%p\n", &priv->regs->rxram[0]);
/* Disable BSPI. */
writel(1, priv->bspi + BSPI_MAST_N_BOOT_CTRL);
readl(priv->bspi + BSPI_MAST_N_BOOT_CTRL);
/* Set up interrupts. */
bcmstb_spi_disable_interrupt(priv->hif_spi_intr2, 0xffffffff);
bcmstb_spi_clear_interrupt(priv->hif_spi_intr2, 0xffffffff);
bcmstb_spi_enable_interrupt(priv->hif_spi_intr2,
HIF_SPI_INTR2_CPU_SET_MSPI_DONE_MASK);
/* Set up control registers. */
writel(0, &priv->regs->spcr1_lsb);
writel(0, &priv->regs->spcr1_msb);
writel(0, &priv->regs->newqp);
writel(0, &priv->regs->endqp);
writel(HIF_MSPI_SPCR2_SPIFIE_MASK, &priv->regs->spcr2);
writel(0, &priv->regs->spcr3);
bcmstb_spi_hw_set_parms(priv);
return 0;
}
static void bcmstb_spi_submit(struct bcmstb_spi_priv *priv, bool done)
{
debug("WR NEWQP: %d\n", 0);
writel(0, &priv->regs->newqp);
debug("WR ENDQP: %d\n", priv->tx_slot - 1);
writel(priv->tx_slot - 1, &priv->regs->endqp);
if (done) {
debug("WR CDRAM[%d]: %02x\n", priv->tx_slot - 1,
readl(&priv->regs->cdram[priv->tx_slot - 1]) & ~0x80);
writel(readl(&priv->regs->cdram[priv->tx_slot - 1]) & ~0x80,
&priv->regs->cdram[priv->tx_slot - 1]);
}
/* Force chip select first time. */
if (priv->curr_cs != priv->default_cs) {
debug("spi_xfer: switching chip select to %d\n",
priv->default_cs);
writel((readl(priv->cs_reg) & ~0xff) | (1 << priv->default_cs),
priv->cs_reg);
readl(priv->cs_reg);
udelay(10);
priv->curr_cs = priv->default_cs;
}
debug("WR WRITE_LOCK: %02x\n", 1);
writel((readl(&priv->regs->write_lock) &
~HIF_MSPI_WRITE_LOCK_WRITE_LOCK_MASK) | 1,
&priv->regs->write_lock);
readl(&priv->regs->write_lock);
debug("WR SPCR2: %02x\n",
HIF_MSPI_SPCR2_SPIFIE_MASK |
HIF_MSPI_SPCR2_SPE_MASK |
HIF_MSPI_SPCR2_CONT_AFTER_CMD_MASK);
writel(HIF_MSPI_SPCR2_SPIFIE_MASK |
HIF_MSPI_SPCR2_SPE_MASK |
HIF_MSPI_SPCR2_CONT_AFTER_CMD_MASK,
&priv->regs->spcr2);
}
static int bcmstb_spi_wait(struct bcmstb_spi_priv *priv)
{
u32 start_time = get_timer(0);
u32 status = readl(&priv->regs->mspi_status);
while (!(status & 1)) {
if (get_timer(start_time) > HIF_MSPI_WAIT)
return -ETIMEDOUT;
status = readl(&priv->regs->mspi_status);
}
writel(readl(&priv->regs->mspi_status) & ~1, &priv->regs->mspi_status);
bcmstb_spi_clear_interrupt(priv->hif_spi_intr2,
HIF_SPI_INTR2_CPU_SET_MSPI_DONE_MASK);
return 0;
}
static int bcmstb_spi_xfer(struct udevice *dev, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
uint len = bitlen / 8;
uint tx_len = len;
uint rx_len = len;
const u8 *out_bytes = (u8 *)dout;
u8 *in_bytes = (u8 *)din;
struct udevice *bus = dev_get_parent(dev);
struct bcmstb_spi_priv *priv = dev_get_priv(bus);
struct bcmstb_hif_mspi_regs *regs = priv->regs;
debug("spi_xfer: %d, t: 0x%p, r: 0x%p, f: %lx\n",
len, dout, din, flags);
debug("spi_xfer: chip select: %x\n", readl(priv->cs_reg) & 0xff);
debug("spi_xfer: tx addr: 0x%p\n", ®s->txram[0]);
debug("spi_xfer: rx addr: 0x%p\n", ®s->rxram[0]);
debug("spi_xfer: cd addr: 0x%p\n", ®s->cdram[0]);
if (flags & SPI_XFER_END) {
debug("spi_xfer: clearing saved din address: 0x%p\n",
priv->saved_din_addr);
priv->saved_din_addr = NULL;
priv->saved_cmd_len = 0;
memset(priv->saved_cmd, 0, NUM_CDRAM);
}
if (bitlen == 0)
return 0;
if (bitlen % 8) {
printf("%s: Non-byte-aligned transfer\n", __func__);
return -EOPNOTSUPP;
}
if (flags & ~(SPI_XFER_BEGIN | SPI_XFER_END)) {
printf("%s: Unsupported flags: %lx\n", __func__, flags);
return -EOPNOTSUPP;
}
if (flags & SPI_XFER_BEGIN) {
priv->tx_slot = 0;
priv->rx_slot = 0;
if (out_bytes && len > NUM_CDRAM) {
printf("%s: Unable to save transfer\n", __func__);
return -EOPNOTSUPP;
}
if (out_bytes && !(flags & SPI_XFER_END)) {
/*
* This is the start of a transmit operation
* that will need repeating if the calling
* code polls for the result. Save it for
* subsequent transmission.
*/
debug("spi_xfer: saving command: %x, %d\n",
out_bytes[0], len);
priv->saved_cmd_len = len;
memcpy(priv->saved_cmd, out_bytes, priv->saved_cmd_len);
}
}
if (!(flags & (SPI_XFER_BEGIN | SPI_XFER_END))) {
if (priv->saved_din_addr == din) {
/*
* The caller is polling for status. Repeat
* the last transmission.
*/
int ret = 0;
debug("spi_xfer: Making recursive call\n");
ret = bcmstb_spi_xfer(dev, priv->saved_cmd_len * 8,
priv->saved_cmd, NULL,
SPI_XFER_BEGIN);
if (ret) {
printf("%s: Recursive call failed\n", __func__);
return ret;
}
} else {
debug("spi_xfer: saving din address: 0x%p\n", din);
priv->saved_din_addr = din;
}
}
while (rx_len > 0) {
priv->rx_slot = priv->tx_slot;
while (priv->tx_slot < NUM_CDRAM && tx_len > 0) {
bcmstb_spi_hw_set_parms(priv);
debug("WR TXRAM[%d]: %02x\n", priv->tx_slot,
out_bytes ? out_bytes[len - tx_len] : 0xff);
writel(out_bytes ? out_bytes[len - tx_len] : 0xff,
®s->txram[priv->tx_slot << 1]);
debug("WR CDRAM[%d]: %02x\n", priv->tx_slot, 0x8e);
writel(0x8e, ®s->cdram[priv->tx_slot]);
priv->tx_slot++;
tx_len--;
if (!in_bytes)
rx_len--;
}
debug("spi_xfer: early return clauses: %d, %d, %d\n",
len <= NUM_CDRAM,
!in_bytes,
(flags & (SPI_XFER_BEGIN |
SPI_XFER_END)) == SPI_XFER_BEGIN);
if (len <= NUM_CDRAM &&
!in_bytes &&
(flags & (SPI_XFER_BEGIN | SPI_XFER_END)) == SPI_XFER_BEGIN)
return 0;
bcmstb_spi_submit(priv, tx_len == 0);
if (bcmstb_spi_wait(priv) == -ETIMEDOUT) {
printf("%s: Timed out\n", __func__);
return -ETIMEDOUT;
}
priv->tx_slot %= NUM_CDRAM;
if (in_bytes) {
while (priv->rx_slot < NUM_CDRAM && rx_len > 0) {
in_bytes[len - rx_len] =
readl(®s->rxram[(priv->rx_slot << 1)
+ 1])
& 0xff;
debug("RD RXRAM[%d]: %02x\n",
priv->rx_slot, in_bytes[len - rx_len]);
priv->rx_slot++;
rx_len--;
}
}
}
if (flags & SPI_XFER_END) {
debug("WR WRITE_LOCK: %02x\n", 0);
writel((readl(&priv->regs->write_lock) &
~HIF_MSPI_WRITE_LOCK_WRITE_LOCK_MASK) | 0,
&priv->regs->write_lock);
readl(&priv->regs->write_lock);
}
return 0;
}
static int bcmstb_spi_set_speed(struct udevice *dev, uint speed)
{
return 0;
}
static int bcmstb_spi_set_mode(struct udevice *dev, uint mode)
{
return 0;
}
static const struct dm_spi_ops bcmstb_spi_ops = {
.xfer = bcmstb_spi_xfer,
.set_speed = bcmstb_spi_set_speed,
.set_mode = bcmstb_spi_set_mode,
};
static const struct udevice_id bcmstb_spi_id[] = {
{ .compatible = "brcm,spi-brcmstb" },
{ }
};
U_BOOT_DRIVER(bcmstb_spi) = {
.name = "bcmstb_spi",
.id = UCLASS_SPI,
.of_match = bcmstb_spi_id,
.ops = &bcmstb_spi_ops,
.of_to_plat = bcmstb_spi_of_to_plat,
.probe = bcmstb_spi_probe,
.plat_auto = sizeof(struct bcmstb_spi_plat),
.priv_auto = sizeof(struct bcmstb_spi_priv),
};
|