1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
|
// SPDX-License-Identifier: GPL-2.0+
/*
* Freescale i.MX28 SPI driver
*
* Copyright (C) 2019 DENX Software Engineering
* Lukasz Majewski, DENX Software Engineering, lukma@denx.de
*
* Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
* on behalf of DENX Software Engineering GmbH
*
* NOTE: This driver only supports the SPI-controller chipselects,
* GPIO driven chipselects are not supported.
*/
#include <common.h>
#include <dm.h>
#include <dt-structs.h>
#include <cpu_func.h>
#include <errno.h>
#include <log.h>
#include <malloc.h>
#include <memalign.h>
#include <spi.h>
#include <asm/cache.h>
#include <linux/bitops.h>
#include <linux/errno.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/imx-regs.h>
#include <asm/arch/sys_proto.h>
#include <asm/mach-imx/dma.h>
#define MXS_SPI_MAX_TIMEOUT 1000000
#define MXS_SPI_PORT_OFFSET 0x2000
#define MXS_SSP_CHIPSELECT_MASK 0x00300000
#define MXS_SSP_CHIPSELECT_SHIFT 20
#define MXSSSP_SMALL_TRANSFER 512
/* Base numbers of i.MX2[38] clk for ssp0 IP block */
#define MXS_SSP_IMX23_CLKID_SSP0 33
#define MXS_SSP_IMX28_CLKID_SSP0 46
struct mxs_spi_plat {
#if CONFIG_IS_ENABLED(OF_PLATDATA)
struct dtd_fsl_imx23_spi dtplat;
#endif
s32 frequency; /* Default clock frequency, -1 for none */
fdt_addr_t base; /* SPI IP block base address */
int num_cs; /* Number of CSes supported */
int dma_id; /* ID of the DMA channel */
int clk_id; /* ID of the SSP clock */
};
struct mxs_spi_priv {
struct mxs_ssp_regs *regs;
unsigned int dma_channel;
unsigned int max_freq;
unsigned int clk_id;
unsigned int mode;
};
static void mxs_spi_start_xfer(struct mxs_ssp_regs *ssp_regs)
{
writel(SSP_CTRL0_LOCK_CS, &ssp_regs->hw_ssp_ctrl0_set);
writel(SSP_CTRL0_IGNORE_CRC, &ssp_regs->hw_ssp_ctrl0_clr);
}
static void mxs_spi_end_xfer(struct mxs_ssp_regs *ssp_regs)
{
writel(SSP_CTRL0_LOCK_CS, &ssp_regs->hw_ssp_ctrl0_clr);
writel(SSP_CTRL0_IGNORE_CRC, &ssp_regs->hw_ssp_ctrl0_set);
}
static int mxs_spi_xfer_pio(struct mxs_spi_priv *priv,
char *data, int length, int write,
unsigned long flags)
{
struct mxs_ssp_regs *ssp_regs = priv->regs;
if (flags & SPI_XFER_BEGIN)
mxs_spi_start_xfer(ssp_regs);
while (length--) {
/* We transfer 1 byte */
#if defined(CONFIG_MX23)
writel(SSP_CTRL0_XFER_COUNT_MASK, &ssp_regs->hw_ssp_ctrl0_clr);
writel(1, &ssp_regs->hw_ssp_ctrl0_set);
#elif defined(CONFIG_MX28)
writel(1, &ssp_regs->hw_ssp_xfer_size);
#endif
if ((flags & SPI_XFER_END) && !length)
mxs_spi_end_xfer(ssp_regs);
if (write)
writel(SSP_CTRL0_READ, &ssp_regs->hw_ssp_ctrl0_clr);
else
writel(SSP_CTRL0_READ, &ssp_regs->hw_ssp_ctrl0_set);
writel(SSP_CTRL0_RUN, &ssp_regs->hw_ssp_ctrl0_set);
if (mxs_wait_mask_set(&ssp_regs->hw_ssp_ctrl0_reg,
SSP_CTRL0_RUN, MXS_SPI_MAX_TIMEOUT)) {
printf("MXS SPI: Timeout waiting for start\n");
return -ETIMEDOUT;
}
if (write)
writel(*data++, &ssp_regs->hw_ssp_data);
writel(SSP_CTRL0_DATA_XFER, &ssp_regs->hw_ssp_ctrl0_set);
if (!write) {
if (mxs_wait_mask_clr(&ssp_regs->hw_ssp_status_reg,
SSP_STATUS_FIFO_EMPTY, MXS_SPI_MAX_TIMEOUT)) {
printf("MXS SPI: Timeout waiting for data\n");
return -ETIMEDOUT;
}
*data = readl(&ssp_regs->hw_ssp_data);
data++;
}
if (mxs_wait_mask_clr(&ssp_regs->hw_ssp_ctrl0_reg,
SSP_CTRL0_RUN, MXS_SPI_MAX_TIMEOUT)) {
printf("MXS SPI: Timeout waiting for finish\n");
return -ETIMEDOUT;
}
}
return 0;
}
static int mxs_spi_xfer_dma(struct mxs_spi_priv *priv,
char *data, int length, int write,
unsigned long flags)
{ struct mxs_ssp_regs *ssp_regs = priv->regs;
const int xfer_max_sz = 0xff00;
const int desc_count = DIV_ROUND_UP(length, xfer_max_sz) + 1;
struct mxs_dma_desc *dp;
uint32_t ctrl0;
uint32_t cache_data_count;
const uint32_t dstart = (uint32_t)data;
int dmach;
int tl;
int ret = 0;
#if defined(CONFIG_MX23)
const int mxs_spi_pio_words = 1;
#elif defined(CONFIG_MX28)
const int mxs_spi_pio_words = 4;
#endif
ALLOC_CACHE_ALIGN_BUFFER(struct mxs_dma_desc, desc, desc_count);
memset(desc, 0, sizeof(struct mxs_dma_desc) * desc_count);
ctrl0 = readl(&ssp_regs->hw_ssp_ctrl0);
ctrl0 |= SSP_CTRL0_DATA_XFER;
if (flags & SPI_XFER_BEGIN)
ctrl0 |= SSP_CTRL0_LOCK_CS;
if (!write)
ctrl0 |= SSP_CTRL0_READ;
if (length % ARCH_DMA_MINALIGN)
cache_data_count = roundup(length, ARCH_DMA_MINALIGN);
else
cache_data_count = length;
/* Flush data to DRAM so DMA can pick them up */
if (write)
flush_dcache_range(dstart, dstart + cache_data_count);
/* Invalidate the area, so no writeback into the RAM races with DMA */
invalidate_dcache_range(dstart, dstart + cache_data_count);
dmach = priv->dma_channel;
dp = desc;
while (length) {
dp->address = (dma_addr_t)dp;
dp->cmd.address = (dma_addr_t)data;
/*
* This is correct, even though it does indeed look insane.
* I hereby have to, wholeheartedly, thank Freescale Inc.,
* for always inventing insane hardware and keeping me busy
* and employed ;-)
*/
if (write)
dp->cmd.data = MXS_DMA_DESC_COMMAND_DMA_READ;
else
dp->cmd.data = MXS_DMA_DESC_COMMAND_DMA_WRITE;
/*
* The DMA controller can transfer large chunks (64kB) at
* time by setting the transfer length to 0. Setting tl to
* 0x10000 will overflow below and make .data contain 0.
* Otherwise, 0xff00 is the transfer maximum.
*/
if (length >= 0x10000)
tl = 0x10000;
else
tl = min(length, xfer_max_sz);
dp->cmd.data |=
((tl & 0xffff) << MXS_DMA_DESC_BYTES_OFFSET) |
(mxs_spi_pio_words << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
MXS_DMA_DESC_HALT_ON_TERMINATE |
MXS_DMA_DESC_TERMINATE_FLUSH;
data += tl;
length -= tl;
if (!length) {
dp->cmd.data |= MXS_DMA_DESC_IRQ | MXS_DMA_DESC_DEC_SEM;
if (flags & SPI_XFER_END) {
ctrl0 &= ~SSP_CTRL0_LOCK_CS;
ctrl0 |= SSP_CTRL0_IGNORE_CRC;
}
}
/*
* Write CTRL0, CMD0, CMD1 and XFER_SIZE registers in
* case of MX28, write only CTRL0 in case of MX23 due
* to the difference in register layout. It is utterly
* essential that the XFER_SIZE register is written on
* a per-descriptor basis with the same size as is the
* descriptor!
*/
dp->cmd.pio_words[0] = ctrl0;
#ifdef CONFIG_MX28
dp->cmd.pio_words[1] = 0;
dp->cmd.pio_words[2] = 0;
dp->cmd.pio_words[3] = tl;
#endif
mxs_dma_desc_append(dmach, dp);
dp++;
}
if (mxs_dma_go(dmach))
ret = -EINVAL;
/* The data arrived into DRAM, invalidate cache over them */
if (!write)
invalidate_dcache_range(dstart, dstart + cache_data_count);
return ret;
}
int mxs_spi_xfer(struct udevice *dev, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
struct udevice *bus = dev_get_parent(dev);
struct mxs_spi_priv *priv = dev_get_priv(bus);
struct mxs_ssp_regs *ssp_regs = priv->regs;
int len = bitlen / 8;
char dummy;
int write = 0;
char *data = NULL;
int dma = 1;
if (bitlen == 0) {
if (flags & SPI_XFER_END) {
din = (void *)&dummy;
len = 1;
} else
return 0;
}
/* Half-duplex only */
if (din && dout)
return -EINVAL;
/* No data */
if (!din && !dout)
return 0;
if (dout) {
data = (char *)dout;
write = 1;
} else if (din) {
data = (char *)din;
write = 0;
}
/*
* Check for alignment, if the buffer is aligned, do DMA transfer,
* PIO otherwise. This is a temporary workaround until proper bounce
* buffer is in place.
*/
if (dma) {
if (((uint32_t)data) & (ARCH_DMA_MINALIGN - 1))
dma = 0;
if (((uint32_t)len) & (ARCH_DMA_MINALIGN - 1))
dma = 0;
}
if (!dma || (len < MXSSSP_SMALL_TRANSFER)) {
writel(SSP_CTRL1_DMA_ENABLE, &ssp_regs->hw_ssp_ctrl1_clr);
return mxs_spi_xfer_pio(priv, data, len, write, flags);
} else {
writel(SSP_CTRL1_DMA_ENABLE, &ssp_regs->hw_ssp_ctrl1_set);
return mxs_spi_xfer_dma(priv, data, len, write, flags);
}
}
static int mxs_spi_probe(struct udevice *bus)
{
struct mxs_spi_plat *plat = dev_get_plat(bus);
struct mxs_spi_priv *priv = dev_get_priv(bus);
int ret;
debug("%s: probe\n", __func__);
#if CONFIG_IS_ENABLED(OF_PLATDATA)
struct dtd_fsl_imx23_spi *dtplat = &plat->dtplat;
struct phandle_1_arg *p1a = &dtplat->clocks[0];
priv->regs = (struct mxs_ssp_regs *)dtplat->reg[0];
priv->dma_channel = dtplat->dmas[1];
priv->clk_id = p1a->arg[0];
priv->max_freq = dtplat->spi_max_frequency;
plat->num_cs = dtplat->num_cs;
debug("OF_PLATDATA: regs: 0x%x max freq: %d clkid: %d\n",
(unsigned int)priv->regs, priv->max_freq, priv->clk_id);
#else
priv->regs = (struct mxs_ssp_regs *)plat->base;
priv->max_freq = plat->frequency;
priv->dma_channel = plat->dma_id;
priv->clk_id = plat->clk_id;
#endif
mxs_reset_block(&priv->regs->hw_ssp_ctrl0_reg);
ret = mxs_dma_init_channel(priv->dma_channel);
if (ret) {
printf("%s: DMA init channel error %d\n", __func__, ret);
return ret;
}
return 0;
}
static int mxs_spi_claim_bus(struct udevice *dev)
{
struct udevice *bus = dev_get_parent(dev);
struct mxs_spi_priv *priv = dev_get_priv(bus);
struct mxs_ssp_regs *ssp_regs = priv->regs;
int cs = spi_chip_select(dev);
/*
* i.MX28 supports up to 3 CS (SSn0, SSn1, SSn2)
* To set them it uses following tuple (WAIT_FOR_IRQ,WAIT_FOR_CMD),
* where:
*
* WAIT_FOR_IRQ is bit 21 of HW_SSP_CTRL0
* WAIT_FOR_CMD is bit 20 (#defined as MXS_SSP_CHIPSELECT_SHIFT here) of
* HW_SSP_CTRL0
* SSn0 b00
* SSn1 b01
* SSn2 b10 (which require setting WAIT_FOR_IRQ)
*
* However, for now i.MX28 SPI driver will support up till 2 CSes
* (SSn0, and SSn1).
*/
/* Ungate SSP clock and set active CS */
clrsetbits_le32(&ssp_regs->hw_ssp_ctrl0,
BIT(MXS_SSP_CHIPSELECT_SHIFT) |
SSP_CTRL0_CLKGATE, (cs << MXS_SSP_CHIPSELECT_SHIFT));
return 0;
}
static int mxs_spi_release_bus(struct udevice *dev)
{
struct udevice *bus = dev_get_parent(dev);
struct mxs_spi_priv *priv = dev_get_priv(bus);
struct mxs_ssp_regs *ssp_regs = priv->regs;
/* Gate SSP clock */
setbits_le32(&ssp_regs->hw_ssp_ctrl0, SSP_CTRL0_CLKGATE);
return 0;
}
static int mxs_spi_set_speed(struct udevice *bus, uint speed)
{
struct mxs_spi_priv *priv = dev_get_priv(bus);
#ifdef CONFIG_MX28
int clkid = priv->clk_id - MXS_SSP_IMX28_CLKID_SSP0;
#else /* CONFIG_MX23 */
int clkid = priv->clk_id - MXS_SSP_IMX23_CLKID_SSP0;
#endif
if (speed > priv->max_freq)
speed = priv->max_freq;
debug("%s speed: %u [Hz] clkid: %d\n", __func__, speed, clkid);
mxs_set_ssp_busclock(clkid, speed / 1000);
return 0;
}
static int mxs_spi_set_mode(struct udevice *bus, uint mode)
{
struct mxs_spi_priv *priv = dev_get_priv(bus);
struct mxs_ssp_regs *ssp_regs = priv->regs;
u32 reg;
priv->mode = mode;
debug("%s: mode 0x%x\n", __func__, mode);
reg = SSP_CTRL1_SSP_MODE_SPI | SSP_CTRL1_WORD_LENGTH_EIGHT_BITS;
reg |= (priv->mode & SPI_CPOL) ? SSP_CTRL1_POLARITY : 0;
reg |= (priv->mode & SPI_CPHA) ? SSP_CTRL1_PHASE : 0;
writel(reg, &ssp_regs->hw_ssp_ctrl1);
/* Single bit SPI support */
writel(SSP_CTRL0_BUS_WIDTH_ONE_BIT, &ssp_regs->hw_ssp_ctrl0);
return 0;
}
static const struct dm_spi_ops mxs_spi_ops = {
.claim_bus = mxs_spi_claim_bus,
.release_bus = mxs_spi_release_bus,
.xfer = mxs_spi_xfer,
.set_speed = mxs_spi_set_speed,
.set_mode = mxs_spi_set_mode,
/*
* cs_info is not needed, since we require all chip selects to be
* in the device tree explicitly
*/
};
#if CONFIG_IS_ENABLED(OF_REAL)
static int mxs_of_to_plat(struct udevice *bus)
{
struct mxs_spi_plat *plat = dev_get_plat(bus);
u32 prop[2];
int ret;
plat->base = dev_read_addr(bus);
plat->frequency =
dev_read_u32_default(bus, "spi-max-frequency", 40000000);
plat->num_cs = dev_read_u32_default(bus, "num-cs", 2);
ret = dev_read_u32_array(bus, "dmas", prop, ARRAY_SIZE(prop));
if (ret) {
printf("%s: Reading 'dmas' property failed!\n", __func__);
return ret;
}
plat->dma_id = prop[1];
ret = dev_read_u32_array(bus, "clocks", prop, ARRAY_SIZE(prop));
if (ret) {
printf("%s: Reading 'clocks' property failed!\n", __func__);
return ret;
}
plat->clk_id = prop[1];
debug("%s: base=0x%x, max-frequency=%d num-cs=%d dma_id=%d clk_id=%d\n",
__func__, (uint)plat->base, plat->frequency, plat->num_cs,
plat->dma_id, plat->clk_id);
return 0;
}
static const struct udevice_id mxs_spi_ids[] = {
{ .compatible = "fsl,imx23-spi" },
{ .compatible = "fsl,imx28-spi" },
{ }
};
#endif
U_BOOT_DRIVER(fsl_imx23_spi) = {
.name = "fsl_imx23_spi",
.id = UCLASS_SPI,
#if CONFIG_IS_ENABLED(OF_REAL)
.of_match = mxs_spi_ids,
.of_to_plat = mxs_of_to_plat,
#endif
.plat_auto = sizeof(struct mxs_spi_plat),
.ops = &mxs_spi_ops,
.priv_auto = sizeof(struct mxs_spi_priv),
.probe = mxs_spi_probe,
};
DM_DRIVER_ALIAS(fsl_imx23_spi, fsl_imx28_spi)
|