1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
|
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (c) 2023 Addiva Elektronik
* Author: Tobias Waldekranz <tobias@waldekranz.com>
*/
#include <common.h>
#include <blk.h>
#include <blkmap.h>
#include <dm.h>
#include <asm/test.h>
#include <dm/test.h>
#include <test/test.h>
#include <test/ut.h>
#define BLKSZ 0x200
struct mapping {
int src;
int cnt;
int dst;
};
const struct mapping unordered_mapping[] = {
{ 0, 1, 3 },
{ 1, 3, 0 },
{ 4, 2, 6 },
{ 6, 2, 4 },
{ 0, 0, 0 }
};
const struct mapping identity_mapping[] = {
{ 0, 8, 0 },
{ 0, 0, 0 }
};
static char identity[8 * BLKSZ];
static char unordered[8 * BLKSZ];
static char buffer[8 * BLKSZ];
static void mkblob(void *base, const struct mapping *m)
{
int nr;
for (; m->cnt; m++) {
for (nr = 0; nr < m->cnt; nr++) {
memset(base + (m->dst + nr) * BLKSZ,
m->src + nr, BLKSZ);
}
}
}
static int dm_test_blkmap_read(struct unit_test_state *uts)
{
struct udevice *dev, *blk;
const struct mapping *m;
ut_assertok(blkmap_create("rdtest", &dev));
ut_assertok(blk_get_from_parent(dev, &blk));
/* Generate an ordered and an unordered pattern in memory */
mkblob(unordered, unordered_mapping);
mkblob(identity, identity_mapping);
/* Create a blkmap that cancels out the disorder */
for (m = unordered_mapping; m->cnt; m++) {
ut_assertok(blkmap_map_mem(dev, m->src, m->cnt,
unordered + m->dst * BLKSZ));
}
/* Read out the data via the blkmap device to another area,
* and verify that it matches the ordered pattern.
*/
ut_asserteq(8, blk_read(blk, 0, 8, buffer));
ut_assertok(memcmp(buffer, identity, sizeof(buffer)));
ut_assertok(blkmap_destroy(dev));
return 0;
}
DM_TEST(dm_test_blkmap_read, 0);
static int dm_test_blkmap_write(struct unit_test_state *uts)
{
struct udevice *dev, *blk;
const struct mapping *m;
ut_assertok(blkmap_create("wrtest", &dev));
ut_assertok(blk_get_from_parent(dev, &blk));
/* Generate an ordered and an unordered pattern in memory */
mkblob(unordered, unordered_mapping);
mkblob(identity, identity_mapping);
/* Create a blkmap that mimics the disorder */
for (m = unordered_mapping; m->cnt; m++) {
ut_assertok(blkmap_map_mem(dev, m->src, m->cnt,
buffer + m->dst * BLKSZ));
}
/* Write the ordered data via the blkmap device to another
* area, and verify that the result matches the unordered
* pattern.
*/
ut_asserteq(8, blk_write(blk, 0, 8, identity));
ut_assertok(memcmp(buffer, unordered, sizeof(buffer)));
ut_assertok(blkmap_destroy(dev));
return 0;
}
DM_TEST(dm_test_blkmap_write, 0);
static int dm_test_blkmap_slicing(struct unit_test_state *uts)
{
struct udevice *dev;
ut_assertok(blkmap_create("slicetest", &dev));
ut_assertok(blkmap_map_mem(dev, 8, 8, NULL));
/* Can't overlap on the low end */
ut_asserteq(-EBUSY, blkmap_map_mem(dev, 4, 5, NULL));
/* Can't be inside */
ut_asserteq(-EBUSY, blkmap_map_mem(dev, 10, 2, NULL));
/* Can't overlap on the high end */
ut_asserteq(-EBUSY, blkmap_map_mem(dev, 15, 4, NULL));
/* But we should be able to add slices right before and
* after
*/
ut_assertok(blkmap_map_mem(dev, 4, 4, NULL));
ut_assertok(blkmap_map_mem(dev, 16, 4, NULL));
ut_assertok(blkmap_destroy(dev));
return 0;
}
DM_TEST(dm_test_blkmap_slicing, 0);
static int dm_test_blkmap_creation(struct unit_test_state *uts)
{
struct udevice *first, *second;
ut_assertok(blkmap_create("first", &first));
/* Can't have two "first"s */
ut_asserteq(-EBUSY, blkmap_create("first", &second));
/* But "second" should be fine */
ut_assertok(blkmap_create("second", &second));
/* Once "first" is destroyed, we should be able to create it
* again
*/
ut_assertok(blkmap_destroy(first));
ut_assertok(blkmap_create("first", &first));
ut_assertok(blkmap_destroy(first));
ut_assertok(blkmap_destroy(second));
return 0;
}
DM_TEST(dm_test_blkmap_creation, 0);
static int dm_test_cmd_blkmap(struct unit_test_state *uts)
{
ulong loadaddr = env_get_hex("loadaddr", 0);
struct udevice *dev;
console_record_reset();
ut_assertok(run_command("blkmap info", 0));
ut_assert_console_end();
ut_assertok(run_command("blkmap create ramdisk", 0));
ut_assert_nextline("Created \"ramdisk\"");
ut_assert_console_end();
ut_assertnonnull((dev = blkmap_from_label("ramdisk")));
ut_assertok(run_commandf("blkmap map ramdisk 0 800 mem 0x%lx", loadaddr));
ut_assert_nextline("Block 0x0+0x800 mapped to 0x%lx", loadaddr);
ut_assert_console_end();
ut_assertok(run_command("blkmap info", 0));
ut_assert_nextline("Device 0: Vendor: U-Boot Rev: 1.0 Prod: blkmap");
ut_assert_nextline(" Type: Hard Disk");
ut_assert_nextline(" Capacity: 1.0 MB = 0.0 GB (2048 x 512)");
ut_assert_console_end();
ut_assertok(run_command("blkmap get ramdisk dev devnum", 0));
ut_asserteq(dev_seq(dev), env_get_hex("devnum", 0xdeadbeef));
ut_assertok(run_command("blkmap destroy ramdisk", 0));
ut_assert_nextline("Destroyed \"ramdisk\"");
ut_assert_console_end();
ut_assertok(run_command("blkmap info", 0));
ut_assert_console_end();
return 0;
}
DM_TEST(dm_test_cmd_blkmap, 0);
|